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Software Defect Prediction

@ Find error prone modules in software
@ Models could also be ranked

It can be used to prioritise testing, allocate resources,
inspections, etc.
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Imbalance data

@ Most publicly available datasets in software defect
prediction are highly imbalanced, i.e., samples of
non-defective modules vastly outnumber the defective
ones.

@ Data mining algorithms generate poor models because
they try to optimize the overall accuracy but perform badly
in classes with very few samples (minority class which is
usually the one we are interested in). This is due to the fact
that most data mining algorithms assume balanced
datasets.

@ The imbalance problem is known to affect many machine
learning algorithms such as decision tress, neural
networks or support vectors machines.
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Dealing with Imbalance Data

@ Sampling: Random Over-Sampling (ROS) or Random
Under-Sampling (RUS) are based on adding or removing
instances of the training dataset.

@ Cost-Sensitive Classifiers (CSC) penalises differently the
type of errors

@ Ensembles: Bagging (Bootstrap aggregating), boosting
and stacking (Stacked generalization) which combines
different types of models

@ Robust algorithms: algorithms designed to work with
unbalanced data
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Over-Sampling: SMOTE

In addition to ROS, there are more intelligent approaches to
generate synthetic data points.

@ SMOTE over-sampling approach in which the minority
class is oversampled by creating synthetic instances along
the line segments joining any/all of the k minority class
nearest neighbors (NN).
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Cost-Sensitive Classifiers (CSC)

@ The idea is to penalise differently the different types of
error (in binary classification, the false positives and false
negatives).

@ Adapt classifiers to handle imbalanced datasets by either

e adding weights to instances (if the base classifier algorithm
allows this) or resampling the training data according to the
costs assigned to each class in a predefined cost matrix

e generating a model that minimises the expected cost
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Whitebox vs Blackbox algorithms

@ Decision trees and rules generate rules capable of
explaining why decisions are made

@ This is in opposition black-block approaches such as
neural-networks or meta-learners that cannot explain why
a selection was done.

In this work we analyse white-box approaches with an
algorithm that considers imbalanced data while it is being
created, J48 Consolidated
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Datasets

We have used available software defect prediction datasets
generated from projects carried out at NASA.
These datasets are available in two different versions from:
@ The Tera-PROMISE repository:
http://openscience.us/repo/
@ And the original one which has curated by Shepperd et al.
who analysed different problems and differences with
these datasets and curated the repository.
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[ Metric [ Definition
McCabe LoC McCabe’s Lines of code
v(9) Cyclomatic complexity
ev(g) Essential complexity
iv(g) Design complexity
Halstead uniqOp Unique operators, ny
base uniqOpnd Unique operands, no
totalOp Total operators, Ny
totalOpnd Total operands, No
Halstead Derived n Vocabulary, n = ny + np
L Program length, N = Ny + N,
\Y Volume, V = N - logo(n)
d Difficulty D = 1/L
i Intelligence
e Efforte = V/L
b Error Estimate
t Time T = E /18 seconds
I0Code Line count of statement
I0Comment Count of lines of comments
I0Blank Count of blank lines
10CodeAndComment Count of lines of code and comments
Branch branchCount No. branches of the flow graph
Class true, false Reported defects?

en et al

The C

Algorithm in Imbal

ced Defect Predicti



Dataset

Description

Ibarguren et al The CTC Algorithm in Imbalanced Defect Prediction Datasets

Experimental Work

Datasets
Classifiers
Evaluation

Running of the Experiments

Results

Table: MDP NASA Datasets Description

[ # Instances D’  %lImbalance Ratio  # Attributes
CMA1 344 12.21 41
JM1 9,593 18.34 22
KC1 2,095 15.51 22
KC3 200 18 41
MCH1 8,737 0.78 40
MC2 127 34.65 41
MWH1 264 10.23 4
PC1 759 8.04 41
PC2 1,493 1.07 41
PC3 1,125 12.44 41
PC4 1,399 12.72 41
PC5 16,962 2.96 40
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Classifiers

@ C4.5 (called J48 in Weka) is a decision tree where the
leaves of the tree correspond to classes, nodes correspond
to features, and branches to their associated values

@ JRip (RIPPER) Rule algorithm: Repeated Incremental
Pruning to Produce Error Reduction

@ PART - Builds a partial C4.5 decision tree in each iteration
and best leaf is rurned into a rule

@ CART - Classification and Regression Trees Breiman et al
(1984)

@ J48Consolidated
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Binary classifiers Evaluation
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Evaluation measures

Common used measures with imbalance data include ROC
(AUC), MCC, and the f — measure, which are defined as:

@ Area Under the ROC Curve
—FP,
AUC = 17

@ Matthews Correlation Coefficient (MCC)
MCC — TPx TN—FPxFN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
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Running of the Experiments

@ All algorithms were run using the WEKA environment, the
Experimenter tool.

@ Results were obtained with 5 runs, each run is a 5-fold CV,
i.e., 5x5CV.

@ The t-test was used to compare with the base classifier
provided by WEKA as well as the aligned Friedman
ranking.
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D’ Results using AUC
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D’ Results using MCC
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MCC Average Rankings

Table: MCC Average Rankings of the algorithms (Aligned Friedman)
and adjusted p-value (Holm test)

Algorithm Ranking  prom
J48Consolidated  27.25 —

J48Cost 27.7083 1
J48Smote 30.25 1
J48 40.5 0.5881
PART 48.8333 0.1327
JRIP 53.0833 0.05286
CART 69.5 0.0001
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AUC Average Rankings

Table: AUC Average Rankings of the algorithms (Aligned Friedman)
and adjusted p-value (Holm test)

Algorithm Ranking  proim
J48Consolidated 13.7083 —

PART 21.625 0.4266
J48Cost 39.2083 0.0208
J48Smote 44.4167 0.0061
J48 50.3333 0.0009
CART 58.4167 0
JRIP 69.7917 0
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Conclusions

@ There are some questions about the quality of the data
@ Duplicates, noise

@ Use other datasets and better statistical tests

@ Analyse duplicates and noise (meta-learning)

@ Combine it with other technique such us noise filtering and
feature selection
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