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 a b s t r a c t

In many machine learning contexts, tasks are often treated as interconnected components with the goal of lever-
aging knowledge transfer between them, which is the central aim of Multi-Task Learning (MTL). Consequently, 
this multi-task scenario requires addressing critical questions: which tasks are similar, and how and why do 
they exhibit similarity? In this work, we propose a multi-task similarity measure based on Explainable Artificial 
Intelligence (XAI) techniques, specifically Accumulated Local Effects (ALE) curves.
  ALE curves are compared using the Fréchet distance, weighted by the data distribution, and the resulting 
similarity measure incorporates the importance of each feature. The measure is applicable in both single-task 
learning scenarios, where each task is trained separately, and multi-task learning scenarios, where all tasks are 
learned simultaneously. The measure is model-agnostic, allowing the use of different machine learning models 
across tasks. A scaling factor is introduced to account for differences in predictive performance across tasks, and 
several recommendations are provided for applying the measure in complex scenarios.
  We validate this measure using four datasets, one synthetic dataset and three real-world datasets. The real-
world datasets include a well-known Parkinson’s dataset and a bike-sharing usage dataset — both structured 
in tabular format — as well as the CelebA dataset, which is used to evaluate the application of concept bot-
tleneck encoders in a multitask learning setting. The results demonstrate that the measure aligns with intuitive 
expectations of task similarity across both tabular and non-tabular data, making it a valuable tool for exploring 
relationships between tasks and supporting informed decision-making.

1.  Introduction

In a complex world, addressing tasks as interconnected elements 
rather than isolated parts makes intuitive sense, especially in a multi-
task scenario. This paper specifically focuses on artificial intelligence 
tasks that can be learned by machine learning models from two per-
spectives: (i) in a single-task manner, where each task is learned inde-
pendently by its own model, which may vary across tasks, or (ii) in a 
multi-task manner, where tasks are learned jointly, leveraging shared in-
formation and transferring knowledge between tasks to achieve better 
results [1,2].

Whether employing single-task or multi-task learning, some critical 
questions arise depending on the context: (i) which tasks are similar, (ii) 
to what extent are they similar, and (iii) why are they similar?

Identifying relationships between tasks is highly relevant in var-
ious contexts, including cybersecurity [3], manufacturing [4], and 
healthcare [5]. Understanding task similarities is crucial for determin-
ing whether similar tasks exhibit analogous behaviors in actionable 
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contexts. For example, two diseases can be treated as distinct tasks, 
but their similarity might suggest that they respond similarly to a 
specific treatment. To leverage such relationships, it is essential not 
only to identify similar tasks but also to explain the basis of their
similarity.

Current multi-task learning techniques compute task similarity in 
an abstract manner, which may introduce biases in the learning algo-
rithm. For instance, soft parameter-sharing techniques in deep learning 
impose penalties on the loss function using metrics such as the Frobenius 
norm [6]. While these approaches often achieve more accurate models 
in terms of loss minimization, they lack interpretability regarding how 
and why tasks are similar.

Explainable Artificial Intelligence (XAI) [7] has been a critical tool in 
understanding the inner workings of black-box models, providing trans-
parency in predictions and enhancing trust. However, to the best of 
our knowledge, current explainable techniques operate only in single-
task scenarios, focusing solely on understanding how a single model 
works [8].
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$A,B\subseteq \mathbb {R}^2$


\begin {align*}\delta _{H}(A,B) := max\Big (\underset {a\in A}{sup}\,\underset {b\in B}{inf}d(a, b),\underset {b\in B}{sup}\,\underset {a\in A}{inf}d(a, b)\Big )\end {align*}


$d$


$f:[a,b]\rightarrow V$


$a,b\in \mathbb {R}$


$a\leq b$


$(V,d)$


$f:[a,b]\rightarrow V$


$g:[a',b']\rightarrow V$


\begin {align}\delta _{F}(f,g) = \underset {\alpha ,\beta }{inf}\underset {t\in [0,1]}{max}d(f(\alpha (t),g(\beta (t))) \label {Xeqn1-1}\end {align}
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\begin {align*}\hat {g}_{j,ALE}^t: \mathcal {P}^t_j \rightarrow \mathbb {R}\end {align*}


\begin {align*}\hat {g}_{j, ALE}^t((z_{k-1,j}^t,z_{k,j}^t]) = \sum _{p=1}^{k}\frac {1}{n^t_j(p)} h^t(j, p)\end {align*}
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The aim of this paper is to propose a multi-task similarity measure to 
identify and explain task similarities in an interpretable manner. The com-
putation of this measure is agnostic to whether tasks were trained using 
single-task or multi-task learning; it only requires the trained models for 
each task. Importantly, the measure evaluates the similarities between 
the models of the tasks, not directly on the datasets. This approach en-
ables us to analyze the mechanisms of the models and their relation-
ships. Since models are simplifications of the underlying complexities 
of tasks, ensuring sufficient model quality is crucial.

This work makes the following contributions to achieve this 
objective:

• We define a similarity measure between tasks from an interpretabil-
ity perspective.

• The similarity measure introduces weights that account for the im-
portance of each variable in a task and the reliability of each segment 
of the data.

In this work, the chosen interpretability method is Accumulated Lo-
cal Effects (ALE) curves [9]. ALE curves capture the average influence 
of each feature on predictions and offer advantages over other explain-
ability tools, such as Partial Dependence Plots (PDPs) [10]. However, 
other methods can also be easily incorporated into the measure.

To quantify the similarity between tasks, we develop a weighted 
modification of the Fréchet Distance [11], a standard measure for com-
puting the distance between curves. Furthermore, we propose a scaling 
factor to modify the similarity to account for differences in predictive 
performance across task, and several recommendations are provided for 
applying the measure in complex scenarios such as dealing with non-
tabular data (e.g., images) or heterogeneous feature spaces across tasks. 
These guidelines help ensure the robustness and interpretability of the 
similarity measure under a wide range of real-world conditions.

The rest of the paper is organized as follows. Section 2 reviews the 
background and related work, covering key concepts such as multi-task 
learning, explainable artificial intelligence, and the Fréchet distance. 
In Section 3, we provide the formal definition of the proposed multi-
task similarity measure. Section 4 applies the measure to four datasets: 
a synthetic dataset, a Parkinson’s patient dataset, a bike-sharing usage 
dataset, and an image dataset (CelebA). Section 5 discusses the main 
properties, strengths, and weaknesses of the measure. Finally, Section 6 
presents the conclusions and outlines future directions for this work.

2.  Background and related work

2.1.  Multi-task learning

The Multitask Learning (MTL) paradigm [1] is an active research 
area that aims to leverage shared knowledge between tasks to allevi-
ate data sparsity and reduce learning errors. The main hypothesis of 
MTL is that simultaneously learning multiple related tasks can enhance 
the generalization performance across all considered tasks [2]. A crit-
ical aspect involves determining which tasks are similar to effectively 
transfer knowledge between them. Otherwise, multi-task learning may 
not function optimally, as knowledge transfer from unrelated tasks can 
detrimentally impact learning and worsen single-task learning.

State-of-the-art techniques in MTL can be broadly categorized 
into hard parameter sharing, soft parameter sharing, and task-specific
modules [6].

Hard parameter sharing approaches, such as those used in early neu-
ral networks, involve sharing a common set of parameters between all 
tasks, thereby reducing the risk of overfitting but limiting task-specific 
flexibility.

In contrast, soft parameter sharing techniques, such as those based 
on matrix factorization or attention mechanisms, maintain task-specific 
parameters while imposing regularization constraints to encourage sim-
ilarity [2]. Recent advances have introduced novel architectures such 

as the multigate mixture-of-experts (MMoE), which dynamically allo-
cate resources to tasks and achieve state-of-the-art results in applica-
tions ranging from natural language processing to computer vision [12]. 
Transformer-based models, which leverage attention mechanisms to 
model inter-task relationships, have also demonstrated superior perfor-
mance in multi-task learning [13].

Despite their success, a persistent challenge in MTL is understanding 
and quantifying task relationships, as most methods rely on abstract or 
implicit measures of similarity, limiting interpretability.

2.2.  Explainable AI

The field of Explainable Artificial Intelligence (xAI) [8] has gained 
substantial attention recently as the deployment of complex machine 
learning models in real-world applications has become more prevalent 
in domains such as the medical domain, where explainability is a must. 
Understanding and interpreting the decisions made by these complex 
models is crucial for building trust, ensuring accountability, and meeting 
ethical standards. This requires the development of techniques capable 
of explaining the diverse range of models employed in various contexts. 
Furthermore, explainability can be a crucial tool in the refinement of 
the process of developing a machine learning model [14].

There exist diverse types of explainable methods, each exploiting 
certain properties of the models. Local methods aim to explain indi-
vidual predictions or a small subset of data such as Individual Condi-
tional Expectation (ICE) [15], Local Interpretable Model-agnostic Ex-
planations (LIME) [16] or SHapley Additive exPlanations (SHAP) [17]. 
Global methods, however, try to explain the behavior of the entire model 
and provide a general picture of the overall trends. An important global 
model-agnostic method is the ALE plots [9], which allows for an under-
standing of how one or two features influence the prediction on average. 
This method is unbiased and less computationally expensive than other 
alternatives, such as PDP [10]. In this work, the multi-task similarity 
measure is developed using ALE as the foundation to compute the sim-
ilarity between features across different tasks.

However, current xAI techniques operate in a single-task manner and 
are designed to understand only the behavior of individual models and 
their variables. As a result, they do not effectively address the multi-task 
paradigm or facilitate an understanding of inter-task relations in order 
to explain the “big picture”.

2.3.  Similarity measures

A similarity measure can be defined as a function that assesses the 
degree of similarity or the relationship between two entities [18]. In 
this work, the considered entities are tasks represented as mathemati-
cal models resulting from a machine learning process. There are many 
definitions of similarity, depending on the nature of the context at hand 
and the properties that we want the similarity to satisfy [19]. The Eu-
clidean distance and cosine similarity are two classical measures that 
capture the relationship between vectors, and they have a broad appli-
cation in many fields. In natural language processing and bioinformatics, 
edit distance and string kernels have been essential for measuring the 
similarity between sequences [20,21]. In statistics, the Kullback-Leibler 
divergence [22] is an important measure that works with two probabil-
ity distributions, and it quantifies the differences between them.

In this work, each task is represented by its ALE curves for each vari-
able. Therefore, the similarity between tasks must be computed based 
on these curves. In the literature, there are several measures to compute 
the similarity between curves.

One important similarity measure between curves is the Hausdorff 
distance [23] which for arbitrary bounded sets 𝐴,𝐵 ⊆ ℝ2 is defined as: 
𝛿𝐻 (𝐴,𝐵) ∶= 𝑚𝑎𝑥

(

𝑠𝑢𝑝
𝑎∈𝐴

𝑖𝑛𝑓
𝑏∈𝐵

𝑑(𝑎, 𝑏), 𝑠𝑢𝑝
𝑏∈𝐵

𝑖𝑛𝑓
𝑎∈𝐴

𝑑(𝑎, 𝑏)
)

where 𝑑 is the Euclidean distance. In other words, the Hausdorff dis-
tance measures the maximum distance an adversary can force you to 
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travel by selecting a point in one set, from which you must then travel 
to the nearest point in the other set. In simpler terms, it represents the 
greatest distance from a point in one set to the closest point in the other 
set. This distance has numerous applications, primarily in image com-
parison, such as in segmentation algorithms for medical images [24] or 
in computer graphics [25]. However, the Hausdorff distance only con-
siders the sets of points along both curves and does not capture the 
trajectories of the curves themselves. In many applications, such as the 
focus of this paper, understanding the course of the ALE curves is crucial 
as they summarize the behavior of each variable in each task.

The similarity measure proposed in this paper is based on the Fréchet 
distance [26], which is a measure of similarity between curves that con-
siders both the location and, importantly, the ordering of the points 
along the curves. If a curve is defined as a continuous mapping 𝑓 ∶
[𝑎, 𝑏] → 𝑉  where 𝑎, 𝑏 ∈ ℝ and 𝑎 ≤ 𝑏 and (𝑉 , 𝑑) is a metric space then, 
given two curves 𝑓 ∶ [𝑎, 𝑏] → 𝑉  and 𝑔 ∶ [𝑎′, 𝑏′] → 𝑉 , the Fréchet distance 
between them is defined [11,23] as 
𝛿𝐹 (𝑓, 𝑔) = 𝑖𝑛𝑓

𝛼,𝛽
𝑚𝑎𝑥
𝑡∈[0,1]

𝑑(𝑓 (𝛼(𝑡), 𝑔(𝛽(𝑡))) (1)

where 𝛼 and 𝛽 are both arbitrary continuous non-decreasing functions 
from [0, 1] onto [𝑎, 𝑏] and [𝑎′, 𝑏′], respectively. Usually, this distance is in-
tuitively explained as follows: a person walks a dog on a leash, with the 
person following one curve, while the dog following another. Both are 
free to adjust their speed, but they cannot backtrack. The Fréchet dis-
tance represents the minimum length of the leash required for traversing 
both curves [11,23].

The exact Fréchet distance between two polygonal curves can be 
computed in time (𝑝𝑞𝑙𝑜𝑔2𝑝𝑞) [23] where 𝑝 and 𝑞 are the number of 
segments on the polygonal curves.

However, if we only focus on the positions of the endpoints of the 
line segments defining the polygonal curves, we encounter the discrete 
Fréchet distance, also known as the coupling distance [11]. It can be 
proved that this distance serves as an upper bound for the (continu-
ous) Fréchet distance, and the difference between them is bounded by 
the length of the longest edge of the polygonal curve [11]. As this dis-
tance forms the basis for the similarity measure defined here, the formal 
definition of the discrete Fréchet distance is discussed in Section 3.3. 
An algorithm based on dynamic programming can compute the discrete 
Fréchet distance in time (𝑝𝑞) [11]. Furthermore, in this work it is con-
venient to use a variant of the discrete Fréchet distance that uses the 
sum instead of the maximum as exposed by Eiter and Mannila [11].

In our approach, the tasks are simplified and represented as curves, 
specifically ALE curves, from an explainable standpoint. With a slight 
adaptation, the discrete Fréchet distance serves as a suitable foundation 
for calculating the similarity between these curves. Note that the defini-
tion of the similarity concept developed here assumes that lower values 
imply high similarity and vice versa (in other works, this is referred to 
as dissimilarity).

In this paper, we propose a post-hoc multi-task similarity measure, 
assuming that tasks have been trained using a single or multi-task learn-
ing paradigm. So, this measure, as defined in this work, is not intended 
to improve model training directly for multi-task learning or, at least, 
not as the primary goal. Furthermore, the aim is to compute this simi-
larity through explainable techniques.

3.  A multitask similarity measure

3.1.  Notation and terminology

We consider a set of tasks  = {1,… , 𝑇 }. We assume that each 
task 𝑡 ∈   has already been trained, resulting in a learned function 
𝑓 𝑡(𝑥) ≈ 𝐸[𝑌 𝑡

|𝑋𝑡 = 𝑥] where 𝐗𝑡 = (𝑋𝑡
1, 𝑋

𝑡
2,… , 𝑋𝑡

𝑑𝑡 ) is the vector of 𝑑𝑡 pre-
dictors for task 𝑡 and 𝑌 𝑡 ∈  ⊆ ℝ is a response variable. Each task 
has an associated dataset 𝑡 consisting of 𝑛𝑡 ∈ ℕ samples such that 
𝑡 = {𝐱𝑡𝑗 = (𝑥𝑡𝑗,1,… , 𝑥𝑡𝑗,𝑑𝑡 ), 𝑦

𝑡
𝑗}

𝑛𝑡
𝑗=1. It is worth noting that this dataset 𝑡

may differ from the training dataset used to derive the function 𝑓 𝑡(𝑥), 
and it is used to build the ALE curves and compute the weights of the 
weighted Fréchet distance.

𝑡 ∶ {1,… , 𝑑} → [0, 1] refers to the importance of each variable 𝑋𝑗
in the task 𝑡. This value can be calculated in various ways. There are 
many techniques to calculate feature importance. Some models allow for 
direct extraction of the importance of predictor variables, such as lin-
ear regression or the Random Forest model [27]. There are also model-
agnostic techniques, such as Permutation Feature Importance (PFI) [28] 
or SHAP values [17]. In either case, it should satisfy that ∑𝑑

𝑗=1 𝑡(𝑗) = 1
for all 𝑡 ∈  . The construction of this function can be derived from any 
of the available explainable techniques, or it can be created manually. 
In the latter case, an expert can specify the values to highlight certain 
features that may be actionable or relevant for the research. Regardless 
of the approach, the importance values assigned to each variable will 
significantly influence the measure.

In the simplest case, all features 𝑗 of each task, i.e., 𝑋1
𝑗 ,… , 𝑋𝑇

𝑗  can 
express the same characteristic, e.g., arterial blood pressure. However, 
while this simplification aids in computation, it is not a strict require-
ment, meaning that, for example, variable 𝑋𝑡

𝑗 can express the same con-
cept as variable 𝑋𝑡′

𝑗′  with 𝑗 ≠ 𝑗′, and the measure defined later is ready 
to accommodate this issue.

For each variable 𝑗 of each task 𝑡, we define a partition  𝑡
𝑗 ∶=

{ 𝑡
𝑗 (𝑘) = (𝑧𝑡𝑘−1,𝑗 , 𝑧

𝑡
𝑘,𝑗 ] ∶ 𝑘 = 0, 1… , 𝐾 𝑡} consisting of 𝐾 𝑡 ∈ ℕ intervals, 

where 𝑧𝑡0,𝑗 = min(𝑥𝑡𝑗 ) and 𝑧𝑡𝐾 𝑡 ,𝑗 = max(𝑥𝑡𝑗 ). For any 𝑥 ∈  𝑡
𝑗 (𝑘), the index 

of the interval into which 𝑥 falls is defined by 𝑘𝑡𝑗 (𝑥) ∶= {𝑘 ∶ 𝑥 ∈  𝑡
𝑗 (𝑘)}

and the number of observations that fall into interval  𝑡
𝑗 (𝑘) is defined 

by 𝑛𝑡𝑗 (𝑘) ∶= |{{𝑥𝑡𝑖𝑗}
𝑛𝑡
𝑖=1 ∶ 𝑥𝑡𝑖𝑗 ∈  𝑡

𝑗 (𝑘)}|. For the purpose of weighting the 
distance function and because tasks can have a different number of ob-
servations, it is convenient to compute the proportion of observations 
that fall into interval  𝑡

𝑗 (𝑘) as 𝑝𝑡𝑗 (𝑘) ∶=
𝑛𝑡𝑗 (𝑘)

∑𝐾𝑡
𝑘=0 𝑛

𝑡
𝑗 (𝑘)

.

Finally, the subset of 𝑑 − 1 predictors of task 𝑡 excluding 𝐱𝑡𝑗 is de-
fined as 𝐱𝑡∖𝑗 ∶= (𝑥𝑡𝑘 ∶ 𝑘 ∈ {1,… , 𝑑}∖{𝑗}).

3.2.  Accumulated local effects (ALE)

Our definition of task similarity is based on the main Accumulated 
Local Effects (ALE) [9]. The main idea behind ALEs is to compute a curve 
that accumulates the averaged local effects of each variable, considering 
the values of the other variables.

Although ALEs of second and beyond orders can be computed, in 
this work, we only consider the main accumulated local effects, i.e., we 
will compute the ALE curves for each feature separately. The uncentred 
ALE curve of the variable 𝑗 and task 𝑡 is a function 
𝑔̂𝑡𝑗,𝐴𝐿𝐸 ∶  𝑡

𝑗 → ℝ

such as 

𝑔̂𝑡𝑗,𝐴𝐿𝐸 ((𝑧
𝑡
𝑘−1,𝑗 , 𝑧

𝑡
𝑘,𝑗 ]) =

𝑘
∑

𝑝=1

1
𝑛𝑡𝑗 (𝑝)

ℎ𝑡(𝑗, 𝑝)

where 
ℎ𝑡(𝑗, 𝑝) =

∑

{𝑖∶𝑥𝑡𝑖,𝑗∈
𝑡
𝑗 (𝑝)}

{𝑓 𝑡(𝑧𝑝,𝑗 , 𝐱𝑖,⧵𝑗 ) − 𝑓 𝑡(𝑧𝑘−1,𝑗 , 𝐱𝑖,⧵𝑗 )}.

The (centre) ALE main effect so that the ALE function has a mean of 
0 with respect to the marginal distribution is calculated b 

𝑓 𝑡
𝑗,𝐴𝐿𝐸 (

𝑡
𝑗 (𝑘)) = 𝑔̂𝑡𝑗,𝐴𝐿𝐸 (

𝑡
𝑗 (𝑘)) −

1
𝑛𝑡

𝐾 𝑡
∑

𝑘=1
𝑛𝑡𝑗 (𝑘)𝑔̂

𝑡
𝑗,𝐴𝐿𝐸 (

𝑡
𝑗 (𝑘)) (2)

In the original paper of ALE plots [9], all the examples used the 
partition  𝑡

𝑗 based on the quantiles of the empirical distribution. How-
ever, in the similarity measure defined here, we prefer to select an 
equally spaced partition, similar to the standard method to compute 
a histogram. This choice allows us to capture the shape of the data dis-
tribution and determine how to weight the similarity measure.
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Fig. 1. ALE curves of different features. Intuitively, curves 1 and 3 are more similar than curves 1 and 2.

3.3.  Weighted Fréchet distance

The Fréchet distance quantifies the similarity between curves by con-
sidering both the positioning and sequence of points along the curves. 
In our case, the curves are the ALE curves that capture the behavior of 
the model in each variable.

The estimation of the main ALE curve explained in Section 3.2 is a 
polygonal curve so, instead of using the definition of the usual Fréchet 
distance, we employ the discrete version.

In this context, we suppose that (polygonal) ALE curve 
𝑓 𝑡
𝑗,𝐴𝐿𝐸 is defined as 𝜎(𝑓 𝑡

𝑗,𝐴𝐿𝐸 ) = (𝑢1,… , 𝑢𝐾 𝑡 ) such that 
𝑢𝑘 = (𝑧𝑡𝑘,𝑗 , 𝑓

𝑡
𝑗,𝐴𝐿𝐸 ((𝑧

𝑡
𝑘−1,𝑗 , 𝑧

𝑡
𝑘,𝑗 ])).

For the Fréchet distance, we need to define a coupling be-
tween two polygonal curves 𝑓 𝑡

𝑗,𝐴𝐿𝐸 and 𝑓 𝑡′
𝑗′ ,𝐴𝐿𝐸 with 𝑡 ≠ 𝑡′ as a se-

quence (𝑢𝑎1 , 𝑣𝑏1), (𝑢𝑎2 , 𝑣𝑏2),… , (𝑢𝑚, 𝑣𝑚) of distinct pairs from 𝜎(𝑓 𝑡
𝑗,𝐴𝐿𝐸 ) ×

𝜎(𝑓 𝑡′
𝑗′ ,𝐴𝐿𝐸 ) such that 𝑎1 = 1, 𝑏1 = 1, 𝑎𝑚 = 𝐾 𝑡, 𝑏𝑚 = 𝐾 𝑡′  and, for all 𝑖 =

1,… , 𝑞 we have 𝑎𝑖+1 = 𝑎𝑖 or 𝑎𝑖+1 = 𝑎𝑖 + 1, and 𝑏𝑖+1 = 𝑏𝑖 or 𝑏𝑖+1 = 𝑏𝑖
The weighted Fréchet Distance is a slight modification of the Discrete 

Fréchet distance [11]. In our notation, the weighted distance between 
two ALEs curves of two different tasks is as follows: 

𝛿𝐹 (𝑔̂𝑡𝑗 , 𝑔̂
𝑡′
𝑗′ ) ∶= 𝑚𝑖𝑛{||𝐿|| ∶ 𝐿 is a coupling between 𝑔̂𝑡𝑗 and 𝑔̂𝑡

′

𝑗′} (3)

where ||𝐿|| = ∑𝑚
𝑖=1 𝑤(𝑝𝑡𝑢𝑎𝑖

, 𝑝𝑡′𝑣𝑏𝑖
)𝑑(𝑢𝑎𝑖 , 𝑣𝑏𝑖 ), and coupling 𝐿 is a sequence 

(𝑢𝑎1 , 𝑣𝑏1), (𝑢𝑎2 , 𝑣𝑏2).
The function 𝑑 represents a distance function, most commonly the 

Euclidean distance.
The weighted Fréchet distance can be computed in (𝑝𝑞) time [11]. 

However, if the number of segments is high or varies across tasks, ap-
proximation techniques such as Dynamic Time Warping (DTW)[29] or 
segment aggregation can be used.

This weighted distance can be seen as a similarity between two vari-
ables from different tasks. As mentioned in Section 3.1, it is not neces-
sary that the same features occupy the same position in two tasks. In 
fact, this measure can be applied to two (a priori) unrelated features to 
identify which feature impacts the response variable similarly. However, 
if all features are named identically across all tasks (and correspond to 
the same concept), it simplifies the computation, as we only need to cal-
culate the similarity 𝑑 × (𝑇 − 1) times, as opposed to 𝑑𝑡 times (assuming 
that all tasks have 𝑑 features).

The typical formulation of the Fréchet distance employs the mini-
mum in Eq. (3), although other alternatives exist that utilizes the sum, 
as in this work. The rationale for this choice is intuitively explained in 
Fig. 1. In this figure, curves labeled 1 and 3 are virtually indistinguish-
able across most of the interval, with any minor differences attributable 
to the inherent uncertainty of the models. These curves only diverge at 
the extremes of the domain so they have to be considered as similar. 
On the other hand, curves 1 and 2, despite exhibiting a similar pattern, 

are less similar than curves 1 and 3. If we calculate the Fréchet distance 
between these curves (ignoring the weighted term) using the minimum 
in Eq. (3), we obtain a value of 45 between curves 1 and 2 as well 
as between curves 1 and 3, despite the differences exposed previously. 
However, if we use the sum instead of the minimum, the curves 1 and 2 
have a Fréchet distance of 4229.13 and curves 1 and 3 have a distance 
of 338.13 highlighting the relevance of using the sum in this measure.

To eliminate the artefactual increase in similarity that occurs when 
ALE curves are discretised at different resolutions, it is necessary to first 
project every curve onto a common, task-independent grid. Specifically, 
for each feature, all observations across tasks are pulled to compute the 
𝐾 empirical quantiles {𝑞1,… , 𝑞𝐾}, and each task’s ALE values are lin-
early interpolated onto these knots. The result is a set of curves with 
identical abscissae and bin weights, so the weighted Fréchet distance re-
flects only genuine functional differences rather than arbitrary segment 
counts. In practice, this resampling step is 𝑂(𝐾) per curve and intro-
duces negligible overhead, while ensuring that the multi-task similarity 
measure remains invariant to uniform curve refinement and numerically 
stable across datasets.

In the weighted Fréchet distance function, we also introduce a 
weighted function 𝑤 ∶ (0, 1] × (0, 1] → [1,∞). The main aim of this func-
tion is to serve as a quantifier of the reliability of each segment of the 
ALE curve because certain segments may have been calculated with very 
few observations, leading to potentially unimportant or less accurate es-
timations of the variable of interest. The exact definition of this weighted 
function can vary, and it has to be related with the context of the envi-
ronment of the tasks. As a general function, we propose Eq. (4). 

𝑤(𝑝𝑢𝑡𝑎𝑖 , 𝑝
𝑡′
𝑣𝑏𝑖

) ∶=
𝑚𝑎𝑥{𝑝𝑡𝑢𝑎𝑖

, 𝑝𝑡′𝑣𝑏𝑖
}

𝑚𝑖𝑛{𝑝𝑡𝑢𝑎𝑖
, 𝑝𝑡′𝑣𝑏𝑖

}
(4)

The purpose of the weighted function is to ponder segments of the 
two ALE curves that we want to compare, ensuring they have sufficient 
support and are relevant for the comparison. Upon reviewing Fig. 1 
again, it becomes apparent that the differences between curves 1 and 3 
at the extremes may be attributed to the uncertainty of the models due 
to the limited support of observations. Therefore, this region should be 
assigned less weight in the computation of the similarity measure. Nat-
urally, the function 𝑤 is symmetrical, i.e., 𝑤(𝑝𝑢𝑡𝑎𝑖 , 𝑝

𝑡′
𝑣𝑏𝑖

) = 𝑤(𝑝𝑡′𝑣𝑏𝑖
, 𝑝𝑢𝑡𝑎𝑖 )

Algorithm 1 shows the Weighted Fréchet distance in pseudo-code.

3.4.  Multi-task similarity measure

The weighted Fréchet distance enables us to compare two features 
from two different tasks. This distance can serve as the foundation for 
defining a measure that allows us to assess the similarity between two 
tasks, but before we can formulate the definition of this measure, there 
are a couple of aspects that we need to consider. On the one hand, one 
of the primary objectives of this measure is to uncover how specific 
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Algorithm 1 Weighted discrete Fréchet distance.
Require: Two polygonal ALE curves 𝜎1 = [(𝑥1, 𝑢1),… , (𝑥𝑝, 𝑢𝑝)] with 

weights 𝑤1[1.𝑝],
𝜎2 = [(𝑦1, 𝑣1),… , (𝑦𝑞 , 𝑣𝑞)] with weights 𝑤2[1.𝑞].

Ensure: 𝛿𝐹 (𝜎1, 𝜎2).
1: Initialize 𝐷[1.𝑝][1.𝑞] ← +∞. 
2: for 𝑖 = 1 to 𝑝 do
3: for 𝑗 = 1 to 𝑞 do
4: 𝜔 ←

max(𝑤1[𝑖], 𝑤2[𝑗])
min(𝑤1[𝑖], 𝑤2[𝑗])

5: 𝑑 ←
√

(𝑥𝑖 − 𝑦𝑗 )2 + (𝑢𝑖 − 𝑣𝑗 )2

6: if 𝑖 = 1 and 𝑗 = 1 then
7: 𝐷[𝑖][𝑗] ← 𝜔 ⋅ 𝑑
8: else
9: best ← min

(

𝐷[𝑖 − 1][𝑗], 𝐷[𝑖][𝑗 − 1], 𝐷[𝑖 − 1][𝑗 − 1]
)

10: 𝐷[𝑖][𝑗] ← best + 𝜔 ⋅ 𝑑
11: end if
12: end for
13: end for
14: return 𝐷[𝑝][𝑞]

features affect the target similarly. In this context, it is not necessary to 
compare all the features present in the training dataset for both tasks. 
Furthermore, there might be features available in one task that are not 
present in the other task. To address this, the measure can consider only 
some of the features. Another reason could be that we want to measure 
the similarity between tasks only for actionable features. On the other 
hand, generally, we do not assume that the 𝑗-th feature in both tasks 
expresses the same characteristic, i.e., the first feature in one task might 
represent the blood pressure of the patient, whereas this feature could 
be the fourth one in another task.

The multi-task similarity measure between a task of interest 𝑡 and 
other task 𝑡′  is a function 
𝛿𝑡 ∶  ⧵ {𝑡} → ℝ+

is defined as 

𝛿𝑡(𝑡′) ∶=
𝑑𝑡
∑

𝑗=1
𝑡(𝑗) min

𝑗′∈{1,…,𝑑𝑡′ }
𝛿𝐹 (𝑓 𝑡

𝑗,𝐴𝐿𝐸 , 𝑓
𝑡′
𝑗′ ,𝐴𝐿𝐸 ) (5)

The pseudocode for the Multi-task Similarity measure is shown in 
Algorithm 2.

Algorithm 2 Multi-task similarity measure.
Require: Tasks 𝑡0, 𝑡1; feature sets 𝑡0 ,𝑡1

ALE curves ALE[𝑡][𝑓 ], weights prop[𝑡][𝑓 ], importances imp[𝑡][𝑓 ].
Ensure: 𝛿(𝑡0, 𝑡1).
1: sim ← 0
2: for each feature 𝑓 ∈ 𝑡0  do
3: minDist ← +∞
4: for each feature 𝑔 ∈ 𝑡1  do
5: 𝑑 ←WeightedFrechetDistance

(

ALE[𝑡0][𝑓 ], prop[𝑡0][𝑓 ], ALE[𝑡1][𝑔],
prop[𝑡1][𝑔]

)

6: minDist ← min(minDist, 𝑑)
7: end for
8: sim ← sim + imp[𝑡0][𝑓 ] × minDist
9: end for
10: return sim

Note that although the weighted Fréchet distance is symmetrical, 
being Eq. (4) symmetrical, the multi-task similarity measure might not 
be symmetrical. This is due to the influence of the importance weights 
in task 𝑡, which may not coincide with the feature importance weights 
of task 𝑡′.

3.4.1.  Multi-task similarity measure including model performance
The similarity defined in Eq. (5) can be misleading when tasks have 

very different predictive quality. Such disparities arise when (i) the 
model assigned to a task lacks sufficient capacity-e.g. using a linear 
learner for data generated by a nonlinear process-or (ii) some tasks are 
intrinsically harder.

Throughout the paper we interpret the multi-task similarity measure 
𝛿𝑡(𝑡′) as 𝛿𝑡(𝑡′) = 0 means identical ALE profiles, while larger values indi-
cate tasks that diverge more strongly. This convention matters because 
the corrective factor introduced below shrinks large values when they 
are attributable to unequal model performance.

Poor performance should not automatically translate into perceived 
task dissimilarity. To account for this, we multiply the raw discrepancy 
by a weight 𝛾𝑡(𝑡′)∈ [0, 1] that depends on the empirical losses 𝐿(𝑡) and 
𝐿(𝑡′) (smaller is better): 
𝛾𝑡(𝑡′) = 𝑓

(

𝐿(𝑡), 𝐿(𝑡′)
)

, (6)

with the desideratum that 𝛾𝑡(𝑡′) ≈ 1 when losses are comparable and 
𝛾𝑡(𝑡′)↓ 0  as their ratio grows. The performance-weighted similarity is then 
𝛿∗𝑡 (𝑡

′) ∶= 𝛾𝑡(𝑡′) ⋅ 𝛿𝑡(𝑡′). (7)

A simple and scale-free choice that meets the desiderata is 

𝛾𝑡(𝑡′) =
min{𝐿(𝑡), 𝐿(𝑡′)}

max{𝐿(𝑡), 𝐿(𝑡′)} + 𝜀
, 𝜀 > 0, (8)

where 𝜀=10−8 (unless stated otherwise) guarantees numerical stability 
when both tasks fit almost perfectly.

If both losses are large, the ratio above is close to 1 even though 
neither model is trustworthy. We therefore flag any task with 𝐿(𝑡) > 𝜏
(e.g., 𝜏 could be the median loss across tasks) and recommend inspecting 
or retraining the corresponding model before drawing conclusions from 
𝛿∗𝑡 .

3.4.2.  Limitations and recommendations
The Multi-task similarity measure developed in this work has certain 

limitations. We highlight these limitations here and provide recommen-
dations to help mitigate these issues.

The ALE curves used for the multi-task similarity computations rely 
on first-order ALE (i.e., they only consider each variable individually). If 
the true signal is an interaction (e.g., 𝑋1 ×𝑋2), both one-way ALEs can 
be flat even though the joint surface differs sharply between tasks. The 
Fréchet distance can be only used between curves parametrized in one 
dimension (as first-order ALE curves), so the measure cannot be applied 
to second or higher order ALE curves. In this case, the recommendation 
is to first learn a shallow autoencoder 𝑍 = 𝑓𝜃(𝑋) on the union of tasks 
and compute the ALE curves on 𝑍 instead of raw 𝑋. The encoder allows 
for the alignment of heterogeneous feature sets and preserves interac-
tions captured in 𝑍.

However, there is a word of caution regarding this procedure. If the 
intended purpose is to assess the similarities between tasks in an ex-
plainable manner, the output of the encoder may not preserve the in-
terpretability. Nevertheless, the measure values can still be used as a 
similarity metric between tasks and can serve, for instance, in cluster-
ing purposes or as a basis for multi-task learning paradigms.

To address this limitation while preserving interpretability, future 
work will explore extending the similarity measure to integrate selective 
second-order effects. One avenue is to compute second-order ALE curves 
for pre-identified key interaction pairs (via domain knowledge or model-
based interaction importance) and aggregate similarity scores from both 
first-order and selective second-order ALEs.

Another limitation that is important to note is the computational 
complexity of the measure. There are three main sources contributing 
to this complexity: (i) the computation of ALE curves, (ii) the calcu-
lation of the weighted Fréchet distance between ALE curves, and (iii) 
the aggregation of similarity scores across all tasks and features. In the 
worst case, the current implementation scales as (𝑇 2𝑑𝐾2) where 𝑇  is 
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the number of tasks, 𝑑 the number of features, and 𝐾 the number of ALE 
segments.

The first source is related to the size of the data and the speed at 
which the trained model can produce predictions. A simple optimiza-
tion is to compute the ALE curves using only a representative sample 
of the data, which can significantly reduce computational load without 
severely affecting accuracy.

The second source stems from the Fréchet distance computation be-
tween ALE curves, which scales with the number of segments in the 
curves and the number of pairwise computations. To alleviate this, one 
could (a) use curves with a reduced or adaptive number of segments, (b) 
apply approximation techniques or pruning heuristics for the Fréchet 
distance, or (c) parallelize the pairwise distance calculations.

The third source arises from computing the similarity between each 
task pair across features. As these computations are independent across 
task pairs, the most recommended solution is to perform the calcula-
tions using parallel processing to take advantage of modern multi-core 
or distributed computing environments. For a very large number of tasks 
𝑇 , we recommend first clustering tasks with a lightweight metric (e.g., 
cosine similarity of feature-importance vectors) and computing the full 
measure only within or between selected clusters, reducing the effec-
tive number of pairwise workload from (𝑇 2) to roughly (𝑇 2

𝑐 ), where 
𝑇𝑐 ≪ 𝑇  is the average cluster size.

Although the similarity measure has so far been presented for tabular 
inputs, many real-world tasks involve non-tabular data, such as image, 
text, or audio signals. A natural remedy is to use an encoder to transform 
such data into a latent representation and compute similarity based on 
these latent features, as proposed at the beginning of this section for 
heterogeneous task structures. However, this approach introduces a sig-
nificant limitation: it compromises the interpretability of the similarity 
measure, as latent features typically lack direct semantic meaning.

To overcome this challenge while preserving compatibility with the 
ALE Fréchet distance framework, we outline three interpretable trans-
formation strategies that enable the application of our similarity mea-
sure to non-tabular data:
1. Concept-bottleneck encoders. We propose employing encoders 
that explicitly predict human-interpretable concepts in their penul-
timate layer (e.g., edge density, tumor shape, or sentiment polarity) 
prior to producing the final output as Concept Bottlenecks Models 
[30]. These concept activations provide a semantically labeled tabu-
lar representation on which first-order ALE curves can be computed, 
thereby retaining the transparency and explainability of the similar-
ity analysis.

2. Domain-specific feature libraries. In many fields, there exist 
well-established libraries of handcrafted, physically meaningful 
descriptors-such as radiomic features for medical images [31], psy-
cholinguistic or sentiment markers for text [32], and spectral coef-
ficients for audio signals [33]. By extracting these features prior to 
model training, we avoid reliance on black-box embeddings and en-
sure that the similarity measure is grounded in features with clear 
interpretability.

3. Attention-pooled region features. Transformer-based architec-
tures naturally provide attention maps that highlight regions (e.g., 
image patches or text tokens) most influential to a prediction [34]. 
We propose aggregating these attentions into 𝐾 coherent super-
pixels (in vision) or phrase clusters (in NLP), resulting in 𝐾 inter-
pretable region scores. ALE curves computed on these scores illus-
trate how specific regions modulate outputs, while weighted Fréchet 
distances on these curves quantify inter-task differences. The original 
attention maps can further serve as visual explanations that comple-
ment the numerical similarity measure.

Each of these strategies offers a pathway to extend our method to non-
tabular data without sacrificing interpretability. Nevertheless, we ac-
knowledge that the transformation step introduces its own assumptions 
and potential biases, which should be carefully considered in practi-

cal applications. We highlight these directions as promising areas for 
future research, particularly for integrating explainability in complex, 
multimodal task similarity analysis.

Finally, we acknowledge an inherent limitation in the proposed in-
terpretability framework. The multitask similarity measure is built on 
Accumulated Local Effects (ALE) curves, which depict how individual 
features influence model predictions. When the true feature-output rela-
tionship is highly non-linear, these curves often exhibit high-frequency 
oscillations that can overwhelm domain experts and obscure the un-
derlying pattern. We address this concern in two complementary ways. 
(i) Encoder-based filtering as described earlier in this section, an en-
coder network can learn a latent representation that captures the salient, 
shared structure of the ALE curves while discarding task-specific noise. 
(ii) Spline smoothing of ALE curves. Alternatively, each ALE curve can 
be regularized directly: we fit a surrogate spline 𝑔̂(𝑥) that minimizes 
a roughness-penalized 𝐿2 loss, thereby preserving the global trend but 
suppressing idiosyncratic wiggles. Both strategies attenuate fine-grained 
fluctuations that do not contribute meaningfully to the multitask sim-
ilarity, yielding explanations that remain faithful yet are considerably 
easier for experts to interpret.

4.  Empirical work

In this section, we apply the similarity measure defined in Section 3.4 
in three different contexts.

Firstly, we simulate toy data from various tasks, each with a few fea-
tures, to comprehend the behavior of the similarity measure. All tasks 
share features arranged in the same order, making them directly com-
parable.

Secondly, we apply the multi-task similarity measure to a real data 
set containing information about Parkinsons’ patients. This demonstrate 
the measure’s applicability in a practical context and allow us to discuss 
its utility in understanding task relationships.

Lastly, we use the multi-task similarity in a bike-sharing dataset from 
the public service BiciMad in Madrid, Spain. In this case, each task cor-
responds to one of the 264 stations available to users, with the goal of 
predicting the number of bikes used per hour based on temporal fea-
tures (e.g., month, day of the week, hour) and weather conditions (e.g., 
humidity, temperature). For this dataset, we employ a hybrid parameter-
sharing multi-task deep learning algorithm.

In the first dataset, due to its simplicity, we aimed to test whether 
the tasks intuitively considered similar align with the similarity detected 
by the measure. In contrast, the other datasets present more complex 
scenarios, allowing us to demonstrate the full potential of the similarity 
measure. These cases highlight the benefits and utility of the measure in 
detecting both general and task-specific behaviors across the datasets.

The details of the model setups can be found respectively in
Appendixes A–D. The implementation of the measure is available at 
github.com/papabloblo/multi-task-similarity.

4.1.  Synthetic dataset

The synthetic dataset simulated consists of five tasks, each with five 
features and 10, 000 observations. For the multitask-measure developed 
in this work, three key factors must be considered: (1) the distribution 
of each predictive feature, (2) the relative importance of each feature in 
the predictive model, and (3) the ALE curves.

Fig. 2 shows the density of each variable across all tasks. It is evident 
that the tasks exhibit very similar densities for variables 𝑋1, 𝑋2 and 𝑋3, 
while differences are observed in variables 𝑋4 and 𝑋5. This indicates 
that even if the patterns of two ALE curves are only similar within a 
narrow segment, a segment containing the majority of the data points 
will significantly contribute to a higher similarity. In the definition of 
the measure, this corresponds to a lower value. The variables 𝑋1 and 𝑋2
are the only predictive variables that are related, following a bivariate 
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Fig. 2. Density of each predictor variable for each task in Synthetic Dataset 1.

Fig. 3. ALE Curves for the Synthetic Dataset 1. The first row shows all the ALE curves of the different tasks for the same feature. The rest of the rows show ALE 
curves for each task and feature.

normal distribution, whereas the remaining predictors are unrelated to 
each other. Details of the data simulation are provided in Appendix A.

Each one of the five tasks was trained independently in a single-task 
learning fashion using a Random Forest model [27] and the importance 
measure of each feature was calculated according to the method de-
scribed by Breiman [27], with the results transformed so that the sum 
of the feature importance for each of the tasks is 1.

Afterwards, the ALE curve of each feature and task was calculated 
using an equally spaced partition comprising 50 intervals. Fig. 3 shows 
the ALE plots for each variable and task, demonstrating similarities in 
behavior among features across tasks. The marginal distribution of each 
variable is depicted as the area below the ALE curves. This has a huge 
impact on the similarity value.

Variables 𝑋1, 𝑋2, and 𝑋3 exhibit nearly identical curves across tasks, 
albeit for different reasons. In contrast, the variable 𝑋3 exhibits a flat 

curve across tasks indicating, as previously observed, that this predictor 
variable is unrelated to the outcome. Finally, features 𝑋4 and 𝑋5 exhibit 
different behaviors across tasks as illustrated by the ALE plots in Fig. 3.

With these plots, and considering that variables 𝑋1, 𝑋2, and 𝑋3 ex-
hibit similarity across tasks and, therefore, do not contribute to mak-
ing tasks more or less similar, we can visually determine which tasks 
are similar. Based on the shape of the curves, it is obvious that tasks 1 
and 2 are very similar with respect to all the variables. However, the 
remaining tasks are only partially similar to each other due to the mix-
ture of shapes in the ALE plots of variables 𝑋4 and 𝑋5, along with the 
underlying distribution of the predictor variables. This emphasizes the 
importance of having an objective measure of the similarity between 
tasks that can consider all the details.

Although the multi-task similarity measure described in this paper 
provides a value indicating the similarity between tasks, to compute this 
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value, we first have had to calculate the weighted Fréchet distance be-
tween one variable of each task with respect the variables of the other 
tasks as described in Eq. (3). These intermediate computations help us 
understand the behavior of the measure and are displayed in Table 1, 
along with the importance of each variable and the final multi-task sim-
ilarity measure. It should be noted that, for simplicity, we assumed that 
all features are named identically across all tasks, and we only consid-
ered relations between variables named identically. Consequently, this 
implies that we only need to calculate the similarity between variables 
𝑋1 across tasks, followed by 𝑋2, and so forth. Remember that, by the 
definition of the measure, lower values indicate that the tasks consid-
ered are more similar. A summarize of the similarity between tasks is 
displayed in Fig. 4.

According to Table 1, variables 𝑋1, 𝑋2, and 𝑋3 exhibit analogous 
values of similarity across tasks with slight variations. This follows the 
expected behavior because all the tasks follow the same relationship 
of 𝑋1 and 𝑋2 to the outcome, and the variable 𝑋3 is unrelated to the 
outcome. Notice that the weighted Fréchet distance between variables 
𝑋3 has lower values than the other variables. This underscores the rel-
evance of considering not only the distance between variables but also 
the importance of the variables in the multi-task similarity measure. 
Although the predictor variable 𝑋3 seems to have a similar pattern in 
all tasks, assessing its importance can capture the insignificance of this 
feature in the prediction (we know that, in reality, there is no relation 

Table 1 
Multi-task similarity measure values tasks in Synthetic Dataset 1. Addi-
tionally, it presents the weighted Fréchet distance between each vari-
able and task, with the last column indicating the feature importance 
in each task.

 Task 1  Task 2  Task 3  Task 4  Task 5  Imp.
 Task 1
𝑋1  –  10.41  14.31  13.03  11.71  0.19
𝑋2  –  9.46  15.53  13.17  14  0.19
𝑋3  –  1.75  2.22  2.42  3.19  0.09
𝑋4  –  7.89  53.25  133.27  107.53  0.27
𝑋5  –  4.73  123.69  3.44  117.92  0.26
 Similarity  –  7.33  52.35  42.22  64.84
 Task 2
𝑋1  10.41  –  13.28  11.19  18.33  0.19
𝑋2  9.46  –  20.99  11.32  10.68  0.19
𝑋3  1.75  –  1.37  1.22  1.89  0.09
𝑋4  7.89  –  50.5  134.59  113.98  0.27
𝑋5  4.73  –  129.62  5.08  140.81  0.27
 Similarity  7.29  –  54.68  41.78  73.72
 Task 3
𝑋1  14.31  13.28  –  14.5  13.73  0.19
𝑋2  15.53  20.99  –  24.22  25.47  0.19
𝑋3  2.22  1.37  –  0.93  1.66  0.09
𝑋4  53.25  50.5  –  183.03  90.73  0.27
𝑋5  123.69  129.62  –  123.33  2.51  0.27
 Similarity  53.03  54.64  –  89.02  32.31
 Task 4
𝑋1  13.03  11.19  14.5  –  12.31  0.19
𝑋2  13.17  11.32  24.22  –  9.51  0.19
𝑋3  2.42  1.22  0.93  –  1.56  0.08
𝑋4  133.27  134.59  183.03  –  41.08  0.28
𝑋5  3.44  5.08  123.33  –  126.64  0.26
 Similarity  42.76  42.76  90.49  –  49.1
 Task 5
𝑋1  11.71  18.33  13.73  12.31  –  0.19
𝑋2  14  10.68  25.47  9.51  –  0.18
𝑋3  3.19  1.89  1.66  1.56  –  0.09
𝑋4  107.53  113.98  90.73  41.08  –  0.26
𝑋5  117.92  140.81  2.51  126.64  –  0.27
 Similarity  64.94  73.34  31.76  49.17  –

with the outcome) and weigh its contribution to the multi-task similarity 
computation.

The most significant differences are observed between variables 𝑋4
and 𝑋5. It is evident that the shape of the curves is not the only deter-
minant for the weighted Fréchet distance. As anticipated in the visual 
inspection, both tasks 1 and 2 have the lowest values of the multi-task 
similarity measure and in the majority of the weighted Fréchet distances 
between variables. Therefore, the results of the measure follow the in-
tuition.

Task 3 exhibits two curves with opposite patterns in variables 𝑋4
and 𝑋5. Variable 𝑋5 has a very similar pattern compared to the same 
variable in Task 5, and the weighted Fréchet distance supports this, re-
sulting in a much lower value compared to the other tasks. However, 
the variable 𝑋4 of Task 3 has a pattern that could be similar to Task 
1 or 2, although it has a different distribution. This is reflected by the 
values of the weighted distance, as we obtain similarly low values com-
pared to Tasks 1 and 2, but these values are much bigger compared to 
other patterns that are more similar, such as between Tasks 1 and 2. 
Ultimately, considering the weighted Fréchet distance of each variable 
and the importance of each feature, the multi-task similarity measure 
indicates that Task 5 is the most similar task. The remaining results can 
be explored in the values collected in Table 1.

As discussed in Section 3.4.1, an alternative version of the multi-task 
similarity measure can be used, incorporating the predictive quality of 
each task through Eq. (7). To demonstrate the usefulness of this ap-
proach, we simulated new data following the same distribution as Task 
1 in the toy dataset, but training a deliberately limited model (specifi-
cally, a Random Forest model with only 3 trees and a minimum node 
size of 750 observations). The ALE curves obtained for this new task 
(Fig. 5) show that, although there are noticeable differences compared 
to those of Task 1 (Fig. 3), the overall behavior remains largely similar.

Table 2 presents the multi-task similarity measure between tasks, 
both with and without incorporating the performance-based scaling fac-
tor. The reference task is indicated by the row, and the compared task 
by the column. Values in parentheses reflect the similarity after adjust-
ing for predictive quality. Notably, the similarities involving Task 6 (the 
poorly performing task) are considerably reduced when the performance 
factor is included-demonstrating that the similarity measure appropri-
ately down weights comparisons involving low-quality models. For ex-
ample, the similarity between Task 1 and Task 6 decreases from 29.73 
to 21.34, and between Task 2 and Task 6 from 35.68 to 28.39. Despite 
the limited model used for Task 6, the similarity values (both raw and 
scaled) indicate that Task 6 is more similar to Task 1 than to any other 
task, which is expected given that both tasks share the same data distri-
bution. This further supports the effectiveness of the performance-aware 
similarity adjustment in preserving meaningful relationships while pe-
nalizing unreliable comparisons.

4.2.  Parkinson dataset

We also apply the multi-task similarity measure developed to the 
Parkinson dataset1 [35], a real-world dataset containing information 
about 42 patients. The goal is to predict the disease symptom score of 
Parkinson at different times using 19 biomedical features. In the multi-
task scenario, each of the 42 patients represents a task. The dataset con-
sists of a total of 5875 records, and each patient (task) has approxi-
mately 200 data points. Although it is not the main goal of this work, 
this dataset is used as a benchmark in several multi-task learning algo-
rithms [2].

Similarly to the approach followed in the previous synthetic dataset 
(Section 4.1), we have trained a separate random forest model for 
each patient (task). Fig. 6 shows the multi-task similarity measure be-
tween patients in a matrix format, aiding in the exploration of the re-

1 https://archive.ics.uci.edu/dataset/189/parkinsons+telemonitoring
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Fig. 4. Multi-task similarity values.

Fig. 5. ALE curves for the task 6.

Table 2 
Multi-task similarity measure between a reference task (rows) and another task (columns). The values in 
parentheses refer to the measure incorporating the performance-based scaling factor.

 Task 1  Task 2  Task 3  Task 4  Task 5  Task 6
 Task 1  –  7.33 (6.61)  52.35 (40.91)  42.22 (34.9)  64.84 (43.88)  29.73 (21.34)
 Task 2  7.29 (6.57)  –  54.68 (47.37)  41.78 (38.28)  73.72 (55.31)  35.68 (28.39)
 Task 3  53.03 (41.44)  54.64 (47.33)  –  89.02 (84.16)  32.31 (27.98)  44.55 (40.93)
 Task 4  42.76 (35.35)  42.76 (39.18)  90.49 (85.55)  –  49.1 (40.21)  55.04 (47.8)
 Task 5  64.94 (43.96)  73.34 (55.02)  31.76 (27.51)  49.17 (40.26)  –  57.32 (54.04)
 Task 6  32.1 (23.04)  36.92 (29.38)  48.35 (44.42)  62.96 (54.68)  65.73 (61.97)  –

sults and the extraction of conclusions. As the matrix shows, we can 
use the multi-task measure to identify patients with different behav-
ior compared to the others, not by using the raw observations, but by 
employing a model that summarizes the general behavior of the tasks 
(or patients in this context). For example, patient 14 has lower val-
ues of similarity (in general) than patient 15, indicating that patient 
15 may have special characteristics that make them unique and dif-
ferent from the other patients in the sample. Patient 14, on the other 
hand, may exhibit a more homogeneous behavior with the rest of the
patients.

Table 3 shows the five highest and five lowest similarity values be-
tween patients 14 and 15 with respect to the other 41 patients. Fig. 7 
shows the ALE plots of the two most important variables for each task 

among the five most and least similar patients (tasks) to patients 14 and 
15. As anticipated in the similarity values in Table 3, it can be observed 
that the tasks similar to Task 14 have a homogeneous increasing pattern 
in the most important variable test_time (time since recruitment into the 
trial), in contrast to the most similar tasks to Task 15, where there is a 
heterogeneous pattern. Furthermore, in the second most important vari-
able (DFA or signal fractal scaling exponent), it is clearer that patient 15 
exhibits a very different response compared to the other patients con-
sidered in the study sample.

With this application, we can see the potential of the measure to 
serve as an exploratory tool to comprehend not only the general behav-
ior of the tasks but also the relationship and the differences between 
them.
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Fig. 6. Matrix of multi-task similarity between patients. The matrix must be 
interpreted as the similarity between a patient in a column with a patient in a 
row.

Table 3 
Multi-task similarity (MTS) between the 
features of Task 1 and the features of the 
other tasks.
 Patient 14  Patient 15
 Patient  MTS  Patient  MTS
 37  9.33  9  47.16
 13  11.52  29  55.64
 1  11.66  35  56.24
 4  20.43  41  58.90
 25  22.21  26  60.87
 …  …  …  …
 21  76.72  4  126.17
 31  81.54  3  129.56
 26  88.39  16  136.62
 29  98.40  13  139.63
 15  159.31  30  154.93

4.3.  Bike-sharing BiciMad dataset

This dataset contains information about the public bike-sharing sys-
tem BiciMad,2 which operates in Madrid, Spain. The records span be-
tween the years 2021 to 2023 and include data from 264 stations where 
bikes can be locked. The objective is to predict the number of bikes un-
locked at each station within a one-hour period. The dataset comprises 
slightly more than 2 million rows and 10 features, including temporal 
variables such as month, weekday, and hour, as well as weather condi-
tions such as precipitation and humidity. In Appendix C, Fig. C.2 dis-
plays the locations of the stations in Madrid, Spain.

In this case, the model used is a hybrid-parameter sharing deep learn-
ing model with three types of layers: (1) layers shared across all tasks 
with the same parameters (hard parameter sharing), (2) task-specific 
layers with parameters encouraged to be similar by applying a regular-
ization constraint (soft parameter sharing), and (3) fully task-specific 
layers with independent parameters for each task. The full details of the 
model and dataset can be found in Appendix C. The multi-task simi-
larity computation took approximately four minutes on a workstation 
equipped with an Intel Core i7-8700 (6 cores/12 threads), 16 GB of 
RAM, an NVIDIA GeForce GTX 1060 (3 GB), and Ubuntu 24.04.2 LTS.

The 264 tasks represent a relatively large number, making it chal-
lenging to manually inspect the relationships between them and derive 

2 https://www.bicimad.com/en/home

a global interpretation of the model. This highlights the usefulness of 
the multi-task similarity measure in automatically extracting relation-
ships between tasks. To explore and group tasks, the measure can act as 
a distance metric, enabling clustering algorithms to group similar tasks 
effectively.

In this work, we use hierarchical clustering to group the tasks based 
on the multi-task similarity measure. Fig. 8 presents the dendrogram 
obtained by applying a hierarchical agglomerative clustering method 
with Ward’s linkage. The dendrogram suggests the presence of six clus-
ters. In this case, all features were considered equally important, so the 
similarity matrix is symmetric.

Fig. 9 illustrates two of the resulting clusters. It can be observed 
that most features exhibit similar patterns in their ALE curves. How-
ever, there are three variables that present different behaviors. Specif-
ically, the feature “Lag1” shows a sharp positive effect in Cluster 1, 
while in Cluster 3 it initially increases but then exhibits a slight neg-
ative trend. Similarly, “Radiation” reveals a nonlinear relationship that 
peaks around mid-range values in Cluster 1, whereas in Cluster 3 it 
shows a steeper and more variable effect with a strong increase toward 
higher values. Lastly, “Temperature” has a consistently increasing effect 
in Cluster 1 but a clearly decreasing influence in Cluster 3. These dif-
ferences suggest that while the overall model behavior is aligned across 
clusters, these features capture distinct functional dependencies, poten-
tially reflecting different underlying subpopulation dynamics. This phe-
nomenon, where most variables exhibit similar patterns and only a few 
show differences, highlights the importance of having measures like the 
one developed in this work. 

Similar to the previous dataset, the differing patterns between the 
most similar and dissimilar tasks can be identified. The first twelve plots 
in Figs. 10 and 11 show the ALE plots for the most similar and dissimilar 
tasks, respectively. Without a multitask similarity measure, it would not 
be straightforward to identify these tasks or to infer the nature of their 
differences.

The previous results, using a Random Forest model, can be found in 
Appendix C, showing that the outcomes are very similar.

4.3.1.  Autoencoder
As discussed in Section 3.4.2, the relationship between the input and 

output data can be sufficiently complex that it cannot be captured by 
first-order ALE curves. One possible remedy discussed in Section 3.4.2 
is to use an autoencoder to learn a set of relevant latent features that 
better represent the underlying structure of the data. For example, in 
the bike sharing dataset, the effects of the hour of the day and the day 
of the week do not contribute independently to the prediction, because, 
as one can intuit, bike usage patterns differ significantly between week-
days and weekends depending on the time of the day. An autoencoder 
can help capture such interactions by encoding them into a more infor-
mative feature space and even discarding irrelevant features. The main 
drawback of this approach is that the interpretability of ALE curves ap-
plied to these new latent features may be reduced. Nevertheless, the 
representation can still serve as a useful similarity measure between 
tasks. 

For this bike sharing dataset, we trained an autoencoder using all the 
data in the training set, without distinguish between tasks (i.e., stations 
unlocked in this context). The encoder outputs six latent features. These 
transformed features are then used as input to a separate model for each 
task. Further details are provided in the Appendix C.1. 

Fig. 12 shows the ALE curves for each of the six latent features. 
Although these features lose the interpretability of the original in-
put variables, the dimensionality reduction offers significant benefits-
particularly in facilitating manual inspection of the relationships be-
tween inputs and outputs and, when possible, identifying some latent 
features as inherent properties of the data. The main advantage of the 
autoencoder-based representation is that complex relationships among 
the original features are captured and summarized within these six la-
tent variables. 
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Fig. 7. ALE plots for the five most and least similar tasks to Tasks 14 and 15. The bold line represents the task of interest. In the figure, only the two most important 
variables for each task of interest are shown.

Fig. 8. Dendrogram for the hierarchical agglomerative clustering method using 
Ward’s linkage and the multi-task similarity measure values.

The last row of plots in Figs. 10 and 11 presents the ALE curves for 
the same tasks previously discussed, but now using the autoencoder-
based codification. Notably, the ALE plots exhibit much more distin-
guishable and structured patterns in the encoded latent features com-
pared to those based on the original input variables. 

Table 4 
Comparison of multi-task similarity statistics with and without 
spline smoothing.
 Method  Mean Similarity  Standard Deviation
 Without Smoothing  23.682  13.281
 With Spline Smoothing  26.523  13.342
 Similarity differences −0.945  0.658

4.3.2.  Spline smoothing
As discussed in Section 3.4.2, the ALE curves can exhibit high-

frequency oscillations that can obscure the interpretability of the 
method. Fig. 13 shows the same ALE curves as in Fig. 9 but with 
roughness-penalized cubic spline smoothing applied. It can be observed 
that the rapid fluctuations present in the original curves are consider-
ably attenuated, resulting in smoother and more interpretable profiles. 
While t he overall trends of the effects are preserved, but the smoothed 
curves reduce visual noise, enabling for clearer identification of feature 
influence across clusters. 

Although spline smoothing improves the interpretability of ALE 
curves by reducing high-frequency noise, it does not significantly alter 
the values of the multi-task similarity measure between tasks. Table 4 
shows that both the mean and standard deviation of similarity values re-
main relatively stable before and after applying spline smoothing. The 
mean similarity increases slightly from 23.682 to 26.523, and the stan-
dard deviation remains nearly unchanged. Furthermore, the root mean 
square error (RMSE) of the similarity values between the two configu-
rations is 1.151, indicating minimal overall deviation introduced by the 
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Fig. 9. Centered ALE plots for two of the clusters.

Fig. 10. Centered ALE plots for all features from the two most similar tasks.

smoothing process. Additionally, a Spearman correlation of 0.9953 is ob-
tained.

These results support the robustness of the proposed similarity mea-
sure with respect to minor variations in curve smoothness.

4.4.  Image dataset

The previous datasets share the common characteristic of being tab-
ular, meaning the information is structured as observations and vari-
ables in a table-like format. While this structure is naturally well-suited 
for use with the multitask similarity measure, the measure can also be 

applied to other data types, provided the information is appropriately 
structured. 

In Section 3.4.2, we proposed several strategies to apply the measure 
to non-tabular data. Although the approaches differ in how the latent 
representation is computed, they all share the same underlying idea: 
encoding the original data into a latent space. 

To provide experimental validation of these ideas, we applied the 
concept bottleneck encoder to the CelebA image dataset.3 This dataset 
contains facial images annotated with multiple binary attributes, which 

3 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Fig. 11. Centered ALE plots for all features from the two most dissimilar tasks. The first twelve plots correspond to the original data, while the remaining six result 
from using the autoencoder.

Fig. 12. Centered ALE plots for the four latent features obtained in the autoencoder.

serve as human-interpretable concepts and are well suited for evaluating 
concept-based representations. Each image is annotated with 40 binary 
attribute such as Smiling, Wearing Glasses, or Mustache. It is reasonable to 
assume that some of these attributes are correlated, for instance, images 
labeled as Male are likely to have a higher probability of also being 
labeled as Mustache. 

In our setup, half of the attributes are used as concepts in the concept 
bottleneck encoder, while the other half serve as separate outputs, each 
representing an individual task in the multitask learning setting. Further 
details can be found in Appendix D. 

The neural network employed consisted of a Convolutional Neural 
Network (CNN) used as an encoder to extract a latent concept repre-
sentation from the input images. This encoder maps each image to a 
20-dimensional binary concept vector through a series of convolutional 
and fully connected layers, using ReLU activations in the hidden layers 
and sigmoid activations at the output to produce probabilities for each 
concept. 

These predicted concept representations serve as input to a multitask 
classifier, implemented as a fully connected neural network that inde-
pendently predicts the 20 target attributes —each corresponding to a 
separate binary classification task. The full model is trained end-to-end 

using a combined loss function that includes binary cross-entropy for 
both concept prediction and final multitask outputs, thereby ensuring 
the consistency and relevance of the latent representations. 

Once trained, the multitask similarity measure is applied to the ALE 
curves computed for each concept. This allows us to evaluate how varia-
tions in the predicted probability of each concept affect the probability 
of the output attributes across tasks. By quantifying the similarity be-
tween tasks in terms of these concept-based ALE curves, we can better 
understand the functional relationships learned by the model and the 
role of shared or divergent concept influences. 

Table 5 presents the pairwise similarity between four representative 
target task attributes from the CelebA dataset, as computed by the pro-
posed multitask similarity measure based on ALE curves over the learned 
concept space. The pairwise distances confirm several intuitive patterns. 
The Mustache and Male tasks form the closest pair, with a similarity value 
of only 0.17, reflecting the strong association between facial hair and 
gender in CelebA. At the other extreme, Mustache and Wearing Lipstick
are separated by the largest value (0.88), underscoring that these tasks 
depend on markedly different concept cues. A cosmetically driven rela-
tionship is evident between Wearing Lipstick and Wearing Necklace (0.36), 
the next-smallest distance in the matrix, suggesting that similar latent 

Knowledge-Based Systems 329 (2025) 114384 

13 



P. Hidalgo and D. Rodriguez

Fig. 13. Centered ALE plots for two of the clusters applying spline smoothing.

Table 5 
Pairwise similarity between selected output tasks in the CelebA dataset based 
on ALE curve comparisons over concept representations. Lower values indicate 
more similar tasks.
 Task  Mustache  Male  Wearing Lipstick  Wearing Necklace
 Mustache  –  0.17  0.88  0.73
 Male  0.17  –  0.81  0.53
 Wearing Lipstick  0.88  0.81  –  0.36
 Wearing Necklace  0.73  0.53  0.36  –

features-likely linked to femininity and facial accessories-govern both 
outputs. Finally, intermediate values (0.53 0.73) for pairs involving Male
and Wearing Necklace signal a moderate overlap of underlying concepts, 
whereas distances above 0.80 denote tasks with largely distinct func-
tional dependencies. Overall, lower distances consistently correspond 
to semantically plausible task similarities, validating the usefulness of 
the ALE-based measure. 

Table 6 confirms that the multi-task similarity measure capture se-
mantically meaningful relations between concepts and tasks. Gender-
linked cues-especially Bald, Black Hair, and Eyeglasses-exhibit near-zero 
distances to Male (0.01, 0.02, and 0.03, respectively) and similarly small 
values to Mustache, reflecting their shared dependence on male identity. 
In contrast, the cosmetic concept Heavy Makeup aligns most strongly 
with the femininity cue Wearing Lipstick (0.05, the lowest entry in its 
row), while all concepts show markedly larger distances to the accessory 
task Wearing Necklace (0.11 0.41). Hence lower distances consistently 
correspond to intuitive task-concept affinities, demonstrating that the 
multitask-similarity metric surfaces the expected gender and cosmetic 
patterns while down-weighting weakly informative features. 

5.  Results and discussion

The application of the multi-task similarity measure across the 
datasets discussed in Section 4 highlights its utility in identifying and ex-
plaining relationships between tasks. The measure’s outcomes align with 
intuitive expectations, enabling the identification of tasks with compa-
rable relationships between features and outcomes from an explainable 
perspective.

Table 6 
Multi-task similarity measure between concepts and two CelebA tasks. Each 
entry is the weighted Fréchet distance (lower ⇒ stronger relation).

 Mustache  Male  Wearing Lipstick  Wearing Necklace
 Mustache
 Bald  –  0.01  0.11  0.12
 Heavy Makeup  –  0.05  0.05  0.07
 Black Hair  –  0.02  0.17  0.13
 Eyeglasses  –  0.03  0.13  0.11
 …  …  …  …
 Male
 Bald  0.01  –  0.51  0.33
 Heavy Makeup  0.05  –  0.80  0.28
 Black Hair  0.02  –  0.13  0.37
 Eyeglasses  0.03  –  0.12  0.41
 …  …  …  …

The synthetic dataset of Section 4.1 serves an ideal testbed to vali-
date the measure in a controlled environment. The computed similarity 
values correspond with visual observations of the ALE curves, under-
scoring the measure’s reliability. In this ad hoc dataset, consisting of 
only five tasks with five variables each, it is straightforward to manually 
identify similar tasks without requiring a formal measure. Nevertheless, 
the computed similarity values align with these manual observations, 
further validating the measure.

Conversely, the relatively small Parkinson’s dataset, comprising 42 
patients with approximately 200 records per patient, presents a signif-
icant challenge in identifying task similarities (patients, in this con-
text) without an appropriate similarity measure. This underscores the
importance of the multi-task similarity measure in uncovering such re-
lationships and facilitating the derivation of meaningful conclusions.

Furthermore, the third dataset, used for predicting bike-sharing us-
age, involves 264 tasks. Identifying task dynamics in this scenario with-
out a summarization tool is particularly challenging. Here, the similarity 
measure can serve as the foundation for clustering methods to group 
tasks effectively. Importantly, the measure captures both the overall 
similarity and variable-specific influences, validating its robustness and 
interpretability across datasets of varying complexity.
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A logical sequence in utilizing the measure involves first comput-
ing the multi-task similarity measure between all the tasks, or at least 
between one task of interest and the remaining tasks. Second, it is bene-
ficial to examine not only the most similar tasks but also the least similar 
ones. By preserving intermediate calculations necessary for computing 
the measure, it becomes possible to elucidate why and how tasks are 
similar or dissimilar. This includes identifying the relevant variables that 
contribute to the low or high values of the similarity measure.

Additionally, the measure allows for intervention in its behavior to 
emphasize certain variables. Ideally, the importance of each variable 
used in the similarity calculation should be determined using a reliable 
method. However, researchers can manually adjust the variable weights 
to prioritize those deemed most relevant or actionable for a specific 
study.

Several multi-task learning scenarios presuppose, either implicitly 
or explicitly, a degree of homogeneity among the tasks. The proposed 
measure is robust enough to be applied to heterogeneous tasks, even 
when the relationships are hidden behind task structures. For instance, 
if one task’s data includes a variable called age and another task’s data 
includes edad (age in Spanish), the measure can detect the similarity be-
tween these variables despite the difference in nomenclature, provided 
they represent the same information.

A significant advantage of this measure is its model-agnostic nature. 
It is irrelevant which model has been used to train each task, and it can 
even handle a mix of models. For example, some tasks may be trained us-
ing black-box machine learning models like deep learning, while others 
use traditional statistical models like linear regression. This is because 
the measure compares ALE curves derived from the models, and ALE 
curves are inherently model-agnostic.

However, the validity of the results heavily depends on the quality 
of the trained models. If the model for each task is not sufficiently ca-
pable of capturing the true patterns in the data and the relationships 
between predictor variables and the target, the resulting measure may 
not be accurate. Conclusions and subsequent actions are limited if the 
models are not well-developed. It is critical to ensure that all models 
used meet appropriate quality standards and exhibit suitable behavior. 
Furthermore, the measure can serve as an exploratory tool to identify 
defective models, allowing researchers to refine and improve them.

One challenge in using the measure lies in how the ALE curves are 
computed. Since the Fréchet distance defined here uses a summation 
instead of the maximum, significant differences in the number of seg-
ments in the ALE curves between tasks can affect the reliability of the 
measure’s results. This issue can be alleviated if all ALE curves have the 
same number of segments, which makes the measure more robust. At 
the very least, if it is known which variables to be compared, it is rec-
ommended that all of the ALE curves corresponding to these variables 
have the same number of segments.

Like any machine learning technique, the multi-task similarity mea-
sure can help achieve its defined purpose, but it must be used cautiously 
and not applied uncritically.

6.  Conclusions and future work

In this work, we explored the construction of a multi-task similarity 
measure from an explainable perspective. This approach aims to iden-
tify similar tasks in a multi-task scenario and provide insights into why 
and how they are similar. While several similarity measures exist for 
comparing tasks, particularly in multi-task learning, — none explicitly 
facilitate the explanation of task similarities— which is invaluable for 
researchers.

Throughout the paper, we applied the measure to four datasets: one 
synthetic dataset designed to demonstrate the behavior of the measure 
in a controlled environment, a real dataset of Parkinson’s patients, a 
dataset focused on predicting bike-sharing usage, and an image dataset 
(CelebA) using concept bottleneck models. Our results demonstrate the 
measure’s utility in detecting task similarities, highlighting the intu-

itive understanding of similarity provided by the multi-task similarity 
measure.

Furthermore, although there are contexts in which the number of 
tasks may pose computational challenges, the execution times for the 
relatively large Bike Sharing Dataset (264 tasks) are reasonable and 
manageable even on modest hardware.

This research opens up several avenues for future work. Firstly, as 
demonstrated with the bike sharing dataset, the similarity measure can 
be integrated into clustering methods to automatically group similar 
tasks. An important line of research would involve identifying which 
clustering methods are most suitable for this purpose, considering fac-
tors such as scalability, interpretability, and robustness. Additionally, 
the quality of the measure can be studied across different models with 
diverse underlying hypotheses (e.g., linear versus non-linear models).

Secondly, the similarity measure can be incorporated into multi-task 
learning algorithms. For instance, in soft parameter-sharing algorithms, 
the constraints on shared parameters could be derived directly from the 
similarity measure. This would allow the algorithm to dynamically ad-
just parameter sharing based on the quantified similarity between tasks, 
potentially improving both performance and interpretability.
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Appendix A.  Synthetic dataset 1

We simulate five tasks, each with 10, 000 observations and five fea-
tures generated as follows:

• 𝑋1 and 𝑋2 are simulated from a bivariate normal distribution with 
the same mean 𝜇 and covariance matrix Σ across all tasks,

• 𝑋3 is simulated uniformly in the (0, 1) interval, and
• 𝑋4 and 𝑋5 are simulated as a mixture of normals, with each task 
having its own parameters.

The outcome 𝑌  is generated as shown in Eq. (A.1).

𝑌 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛𝑠𝑡𝑑 (𝑋1, 𝑋2) + 𝑞𝑠𝑡𝑑 (𝑋4, 𝑋5). (A.1)

The first part of the sum is computed as

𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛(𝑋1, 𝑋2) = 20 +
2
∑

𝑖=1
(𝑋2

𝑖 − 10 cos(2𝜋𝑋𝑖)) (A.2)
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Table A.1 
Simulated data generation for each of the five tasks. 2(𝜇,Σ) refers to the bivariate normal 
of mean 𝜇 and standard deviation Σ,  (𝑎, 𝑏) refers to uniform distribution in the interval 
(𝑎, 𝑏) and  (𝜇1,Σ1) + (𝜇2,Σ2) is a mixture of two normals. The 𝑎, 𝑏 and 𝑐 are the param-
eters of the quadratic form expressed in Eq. (A.1).

𝑋1 and 𝑋2 𝑋3 𝑋4 and 𝑋5 𝑌

 Task 2(𝜇 Σ)  (𝑎, 𝑏)  (𝜇1 Σ1) +  (𝜇2 Σ2)  a  b  c
 1  0  0.1  0  0.1  1  1  1
 2  0  0.1  0  0.1  1  1 −1

 3 (0, 0)
(

2 1
1 2

)

(0, 1) −0.25  0.1  0.25  0.1  1 −1  1
 4  0  0.1  0  0.1 −1  1  1
 5 −0.25  0.1  0.25  0.1 −1 −1  1

Fig. A.1. Surface plots and contour plots of the relationship between predictor variables 𝑋1 and 𝑋2 and the outcome across all tasks.

The second part is the quadratic form 

𝑞(𝑋4, 𝑋5) = 𝑎𝑋2
4 + 𝑏𝑋2

5 + 𝑐𝑋4𝑋5 (A.3)

where the scalars 𝑎, 𝑏, 𝑐 ∈ {−1, 1} are dependent of the task.
The functions 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛𝑠𝑡𝑑 (𝑋1, 𝑋2) and 𝑞𝑠𝑡𝑑 (𝑋4, 𝑋5) appearing in 

Eq. (A.1) are the normalized versions of the respective functions, i.e., 
with zero-mean and unit variance. For a detailed breakdown of the sim-
ulation, we refer to Table A.1.

The relationship of the predictors with the outcome, as per Eq. (A.1), 
can be decomposed into two additive components.

The first one is attributed to 𝑋1 and 𝑋2 through the 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛 func-
tion described in Eq. (A.2). This complex function is commonly em-
ployed to test the performance of optimization algorithms, such as ge-
netic algorithms [36]. It is characterized by its complexity, featuring 
numerous local minima and a large search space. The function’s graph-
ical representation can be observed in Fig. A.1.

The second component consists of a quadratic form with respect to 
variables 𝑋4 and 𝑋5. The shape of the quadratic forms will vary de-
pending on the values of 𝑎, 𝑏, 𝑐 ∈ {−1, 1} as illustrated in Table A.1. The 
relation between variables 𝑋4 and 𝑋5 is shown in Fig. A.2. Although 
there are tasks that share a similar shape with respect to the projection 
to one of the variables, the variation in the distribution of variables 𝑋4
and 𝑋5 across tasks (see Fig. 2) will cause the similarity measure to vary.

The predictor variable 𝑋3 has no relationship with the outcome. 
Therefore, if the similarity measure is well-constructed and sufficiently 
robust, this variable should not affect the values obtained from the mea-
sure.

The model used for training was a Random Forest, implemented us-
ing the randomForest library of R. To obtain the best model for each 
task, a grid search strategy was employed, testing combinations of the 
number of trees (50, 100, 250, and 500) and the number of variables 
randomly selected at each split (1, 2, 3, 4, and 5). All other hyperpa-
rameters were left at their default values. The models were trained on 
70% of the data, with the remaining 30% used for testing.

The best combination for each model, based on the root mean 
squared error (RMSE), is represented in Table A.2

Table A.2 
RMSE for each task.

 Task 1  Task 2  Task 3  Task 4  Task 5
 RMSE (train)  0.686  0.699  0.713  0.685  0.717
 RMSE (test)  0.707  0.711  0.741  0.699  0.736
 Number of trees  250  250  100  250  100
 Features randomly selected  1  3  2  2  4

Appendix B.  Parkinson dataset

The model for the Parkinson dataset was trained in a similar manner 
to the approach described in Appendix A. In this case, the number of 
variables randomly selected at each split was chosen from the values 1, 
5, 10, 15, and 19.

Appendix C.  Bike-sharing BiciMad dataset

The dataset is constructed by combining the information available 
from the Open Data portal of the Empresa Municipal de Transportes de 
Madrid (EMT) (Municipal Transport Enterprise of Madrid, in English)4 
and weather condition data from the Open Data portal of the Madrid 
City Hall, Spain.5 The predictor variables are shown in Table C.1

The proposed neural network is a hybrid-parameter sharing deep 
learning model with three types of layers, designed for multi-task learn-
ing. This architecture leverages shared representations across tasks 
while preserving task-specific nuances.

The architecture consists of one layer shared across all tasks with 
the same parameters (hard parameter sharing), followed by task-specific 
layers with parameters encouraged to be similar by applying a regular-
ization constraint (soft parameter sharing) and (3) fully task-specific 

4 https://opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1)
5 https://datos.madrid.es/portal/site/egob/menuitem.

c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=
fa8357cec5efa610VgnVCM1000001d4a900aRCRD&vgnextchannel=
374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
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Fig. A.2. The figures depict the contour plots and surface plot of the predictor variables 𝑋4 and 𝑋5 for the different tasks.

Table C.1 
Description of predictor variables used in the model.
 Variable  Type / Range  Unit  Brief description
 Lag 1  numeric  same as target  Target variable at 𝑡 − 1 (one hour earlier).
 Lag 2  numeric  same as target  Target variable at 𝑡 − 2 (two hours earlier).
 Lag 3  numeric  same as target  Target variable at 𝑡 − 3 (three hours earlier).
 Lag 4  numeric  same as target  Target variable at 𝑡 − 4 (four hours earlier).
 Lag 5  numeric  same as target  Target variable at 𝑡 − 5 (five hours earlier).
 Wind speed  numeric  ms−1  Mean horizontal wind speed during the current hour.
 Wind direction  numeric (0-360)  degrees  Meteorological wind direction (0° = North, 90° = East).
 Temperature  numeric  °C  Ambient 2-m air temperature.
 Humidity  numeric (0-100)  %  Relative humidity.
 Pressure  numeric  hPa  Surface atmospheric pressure.
 Radiation  numeric  Wm−2  Global horizontal solar irradiance.
 Precipitation  numeric  mm  Liquid-equivalent precipitation accumulated over the previous hour.
 Holiday  binary (0/1)  -  Indicator equal to 1 if the date is a national/public holiday.
 Month  integer (1-12)  -  Calendar month (1 = January ... 12 = December).
 Hour  integer (0-23)  -  Hour of day in local (solar) time.
 Weekday  integer (1-7)  -  Day of week (1 = Monday ... 7 = Sunday).

layers with independent parameters for each task. The details are as 
follows:

• Input: A 264 × 128 × 10 tensor.
• Hard parameter sharing:

– Fully Connected Layer with 264 neurons and ReLU activation.
• Soft parameter sharing (×264):

– Fully Connected Layer with 264 neurons and ReLU activation.
– Fully Connected Layer with 128 neurons and ReLU activation.

• Output Layer (×264): A single neuron with ReLU activation (the out-
put must be a positive number).

Fig. C.1 provides a visual representation of the model.
To obtain the best model, a grid search strategy was employed using 

a combination of learning rates (0.1, 0.001, 0.0001, and 0.00001) and a 
penalty factor values for the regularization constraint in soft parameter 
sharing (0.1, 0.01, and 0.001).

The ALE curves were calculated with a default size of 30 intervals. 
However, the variables with fewer than 30 unique values (e.g., the 
month feature), an appropriate number of intervals was used.

To contextualize the data set, Fig. C.2 displays the locations of the 
stations Madrid, Spain.

The Multi-task Similarity Measure has been computed for the same 
dataset, this time using a Random Forest model. Fig. C.3 displays the 
same two clusters shown in Fig. 9, but generated with the Random Forest 
model. It can be observed that the behavior of the Centered ALE plots 
is very similar.

C.1.  Autoencoder

The autoencoder consists of a symmetric architecture with an en-
coder and a decoder. The encoder maps the 16-dimensional input to 
a 6-dimensional latent representation through two fully connected lay-
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Fig. C.1. Neural network architecture for Bike-sharing dataset.

Fig. C.2. Locations of the stations in the city of Madrid, Spain.

Fig. C.3. Centered ALE plots for all features from two of the clusters using a Random Forest model.
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ers of sizes 16 𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤 10 𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤 6, using ReLU activations. The 
decoder reconstructs the original input by mirroring this structure (6 
𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤 10 𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤 16), also using ReLU activations, except for 
the output layer, which uses a linear activation.

The model was trained using the mean squared error (MSE) loss func-
tion with the Adam optimizer (learning rate = 0.0001, batch size = 
128) for 100 epochs. Early stopping was applied with a patience of 10 
epochs.

The complete dataset was used without differentiating between 
tasks, and the target variable (use) was excluded from the input to the 
autoencoder.

Appendix D.  CelebA dataset

In this work, we use the CelebA dataset to validate the application 
of concept bottleneck encoders in a multitask learning setting. CelebA 
consists of over 200,000 facial images, each annotated with 40 binary 
attributes representing various semantic features such as facial traits, 
accessories, and demographic characteristics.

To structure the multitask setting and the concept bottleneck, we 
split the 40 attributes into two disjoint sets:

• Concept attributes (used as bottleneck variables): These 20 
attributes are used as interpretable intermediate representations 
within the concept bottleneck encoder. They represent observable 
traits that are expected to capture key visual semantics:

Arched Eyebrows, Bags Under Eyes, Bald, Bangs, Big Lips, Big Nose, 
Black Hair, Blond Hair, Brown Hair, Bushy Eyebrows, Double Chin, Eye-
glasses, Heavy Makeup, High Cheekbones, Mouth Slightly Open, Pale 
Skin, Receding Hairline, Smiling, Straight Hair, Wavy Hair.

• Target task attributes (used as multitask outputs): These 20 at-
tributes are predicted from the latent concept representations. Each 
of them defines a separate output in the multitask learning setup:

5 o’Clock Shadow, Attractive, Chubby, Goatee, Gray Hair, Male, 
Mustache, Narrow Eyes, No Beard, Oval Face, Pointy Nose, Rosy Cheeks, 
Sideburns, Wearing Earrings, Wearing Hat, Wearing Lipstick, Wearing 
Necklace, Wearing Necktie, Young, Blurry.

All attributes were binarized and normalized prior to training. The 
dataset was randomly split into training, validation, and test sets follow-
ing the official partitioning provided by CelebA. Images were resized 
to 64 × 64 pixels, and standard data augmentation techniques (random 
horizontal flips and normalization) were applied during training.

This setup allows us to evaluate the capacity of the concept bot-
tleneck encoder to extract meaningful latent features that can support 
multiple downstream tasks while maintaining interpretability. 
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