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 A B S T R A C T

This article presents an innovative approach to address the optimization and planning of hydrogen network 
transmission, focusing on minimizing computational and operational costs, including capital, operational, 
and maintenance expenses. The mathematical models developed for gas flow rate, pipelines, junctions, 
and storage form the basis for the optimization problem, which aims to reduce costs while satisfying 
equality, inequality, and binary constraints. To achieve this, we implement a dynamic algorithm incorporating 
100 scenarios to account for uncertainty. Unlike conventional successive linear programming methods, our 
approach solves successive piecewise problems and allows comparisons with other techniques, including 
stochastic and deterministic methods. Our method significantly reduces computational time (56 iterations) 
compared to deterministic (92 iterations) and stochastic (77 iterations) methods. The non-convex nature of 
the model necessitates careful selection of starting points to avoid local optimal solutions, which is addressed 
by transforming the primal problem into a linear program by fixing the integer variable. The LP problem is 
then efficiently solved using the Complex Linear Programming Expert (CPLEX) solver, enhanced by Monte 
Carlo simulations for 100 scenarios, achieving a 39.13% reduction in computational time. In addition to 
computational efficiency, this approach leads to operational cost savings of 25.02% by optimizing the selection 
of compressors (42.8571% decreased) and storage facilities. The model’s practicality is validated through real-
world simulations on the Belgian gas network, demonstrating its potential in solving large-scale hydrogen 
network transmission planning and optimization challenges.
1. Introduction

Hydrogen, increasingly recognized as an environmentally friendly 
fuel due to its potential to reduce CO2 emissions [1], is gaining atten-
tion across multiple sectors including petroleum, chemical industries, 
fuel-cell vehicles, and energy production [2]. Traditional hydrogen 
production methods like fossil fuel-based reforming and coal gasifica-
tion [3] are being complemented by innovative alternatives such as 
synthesis from organic waste and photoelectric water splitting [4–6], 
driven by a shift towards sustainable energy solutions. Currently, about 
95 million tons of hydrogen are produced annually, mostly from natural 
gas [7,8], supporting sectors like refining and ammonia production. 
Hydrogen’s role in the transportation and energy sectors is expand-
ing [9], with technological advancements enhancing its production 
and applications [10–13]. Despite challenges, ongoing research into 
hydrogen’s sustainable production and applications in areas like green 
hydrogen generation, refining, and steel production [9] offers promis-
ing prospects for reducing dependency on fossil fuels and minimizing 
environmental impacts [11,13].
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In recent years, the concept of sustainable and fully integrated 
networks has gained significant interest from both policymakers and 
researchers [14]. This shift is driven by escalating costs, the need 
for sustainability, and advances in digital technology, prompting the 
evolution of isolated systems into cohesive, networked structures. These 
integrated systems deliver diverse services across various sectors, in-
cluding transportation [15–17], electricity, water [18–20], and natural 
gas. Historically, these networks operated independently within their 
respective domains. Yet, they have grown increasingly interconnected 
due to shared goals of sustainability and cost-effectiveness. For in-
stance, New England’s electric power grid heavily depends on natural 
gas not only for electricity generation but also for heating residential 
buildings.

As a result, the complex and varied interdependencies among these 
network systems underscore the need for precise and sustainable net-
work operations. Such operations would facilitate optimal management 
through a holistic approach, effectively balancing trade-offs [14,21].
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Nomenclature

Number Sets
𝑗 ∈  index of junctions
𝑛 ∈  index of compressor stations
𝑟 ∈ R index of H2 supply sources
𝑠 ∈  index of H2 storage units
𝑡 ∈  index of time horizon
Other Symbols
 𝛿′ variable discharge and suction pressure
𝑛́ Hazen–Williams and Darcy-Weisbach com-

ponent
𝛼𝑛 loss at each node (n)
𝛽𝑐𝑝 compression loss at compressor (c)
𝛿 H2 flow probability
𝓁 represents total no. of branches
𝜂 variable operating cost factor
𝛾, 𝑘 are constants
𝐅𝑎𝑏 total flow
𝐇𝑎𝑏 nodal head of a pipe
𝐇𝑝
𝑏,𝑟 required pressure at the nodal head of a 

pipe
𝐇𝑝
𝑏 pressure at nodal head of a pipe

𝐑𝑎𝑏 resistance of a pipe
𝓁 pipeline capital cost
𝑐𝑎𝑝 capital cost
𝑜𝑝 operating cost
𝑚 denotes length of a H2 pipe in (km)
𝑔 H2 gas storage unit
d denotes the internal diameter of a H2 pipe 

in (mm)
𝛾 𝑡 storage level increasing over t
𝑣𝑡𝑔 max. the volume of a gas
𝑔,𝑣 max. volume at storage unit
𝜓𝑛 shutdown state of the compressor unit
𝜎 storage state at time t
𝛾 𝑡 storage level is decreasing over t
𝐇𝑝
𝑏 min. pressure at the nodal head of a pipe

𝑔,𝑣 min. volume at storage unit
𝜑𝑛 startup state of the compressor unit
𝜉𝑛 on/off state of the compressor unit
𝑎, 𝑏 nodes carrying non-zero flow
𝑓 denotes the friction factor
𝑓𝑎,𝑏 H2 flow from node 𝑎 to 𝑏
𝑓𝑟𝑎𝑏 friction of a pipe
𝑔𝑑,𝑡 H2 demand over 𝑡
𝐻 𝑡

𝑔
pressure head at the outlet of the storage 
unit

𝑛𝑔 total no. of H2 gas pipes
𝑝 denotes gas pressure
𝑝𝑎 denotes atmospheric pressure in psia
𝑝𝑑 discharge pressure (psi)
𝑝𝑠 suction pressure (psi)
𝑃𝐷 denotes pressure drop in the pipe
𝑞ℎ denotes volumetric flow rate in m3∕h
𝑞𝑟 flow of H2 gas supply sources
𝑞𝑖𝑛 in-flow of a H2 gas
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𝑞𝑜𝑢𝑡 out-flow of a H2 gas
𝑞𝑠𝑡 flow from storage facility
𝑆𝑔 denotes relative density of gas
𝑠𝑇 suction temperature
𝑆𝑎𝑏 cross-section area of a pipe
𝑇 denotes temperature in ◦K
𝑣𝑡𝑔 volume of a H2 as in MMCFD
𝑊 rate of work done
𝑧 compressibility factor
𝑔,𝑣 volume at storage unit

Consequently, there is a pressing need for robust, dynamic, and au-
tonomous modelling strategies. These strategies must accurately rep-
resent the diverse interdependencies of these systems while ensuring 
a flexible and scalable implementation across different application 
domains [22]. This research makes significant contributions to the 
field of hydrogen gas transmission network optimization by addressing 
the complexities of interdependencies, cost factors, and operational 
constraints.

This study extends traditional gas transmission models [23] to the 
hydrogen sector by developing a comprehensive and adaptive opti-
mization framework that incorporates dynamic gas flow rates, pipeline 
design, storage capacities, and compressor costs. The primary contribu-
tions lie in employing a hybrid Mixed Integer Non-Linear Programming 
(MINLP) approach, integrating uncertainty through 100 scenarios in 
the Monte Carlo method, which dynamically adapts to fluctuating 
conditions. By transforming the non-convex optimization problem into 
a more tractable Linear Programming (LP) formulation via fixed integer 
variables, the model achieves a 39.13% reduction in computational 
time compared to conventional methods. Additionally, the novel algo-
rithm yields a 25.02% reduction in operational costs through optimal 
compressor and storage selection. Rigorous real-world validation us-
ing Belgium’s natural gas network highlights the model’s practical 
applicability and robustness, marking a significant advancement in 
hydrogen network optimization by addressing both computational effi-
ciency and cost minimization in dynamic and uncertain environments. 
The remaining paper is organized as follows.

Section 2 describes the related works. The system model and prelim-
inaries are discussed in Section 3. The problem formulation is discussed 
in Section 4. Section 5 describes the solution methodology, algorithms, 
their implementation, and possible drawbacks. Simulation results are 
discussed in Section 6. Finally, the conclusion and future work are 
summarized in Section 7.

2. Related work

In the literature, optimization algorithms for hydrogen network 
operations often rely on formal graph-theoretic approaches and are 
tailored to specific applications. For example, a minimum-cost flow 
model was developed by Rabiee et al. [24] to optimize hydrogen trans-
mission networks under uncertainty, using mixed-integer programming 
to minimize operational costs, but this approach does not fully account 
for network heterogeneity. The challenge arises because different types 
of system functions (such as pipeline capacities, gas flow variations, and 
storage requirements) introduce significant heterogeneity, which com-
plicates optimization efforts. Traditional graph-based models, which 
consist of vertices (nodes) and edges (links), typically describe the 
topology of a network but fail to capture the dynamic processes or the 
varying nature of hydrogen flow under different scenarios.

Efforts to address these complexities have led to the development of 
multi-layer network frameworks. For instance, Liu et al. [25] proposed 
a tensor-based framework for modelling multi-layer energy systems, 
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including hydrogen networks, allowing for the integration of various 
network layers (such as pipelines, junctions, and storage facilities) 
to capture interdependencies and dynamic processes. However, while 
such models offer a more comprehensive understanding of complex 
systems, they often lack empirical validation in real-world scenarios, 
which limits their practical application. Other researchers, such as Hos-
seini et al. [26], have sought to expand upon traditional graph theory 
to better incorporate heterogeneity in energy networks, especially for 
hydrogen transportation systems. Their work provides a conceptual 
framework for modelling and analysing such systems, but it mainly 
focuses on theoretical formulations without substantial empirical data 
or simulations to validate the proposed models. Nevertheless, Kivelä 
et al. have outlined the modelling limitations that can be addressed 
with multilayer networks [27]. Consequently, solutions based on opti-
mization algorithms may encounter these inherent limitations. Kivelä 
et al. have also introduced a convex energy-like function for modelling 
gas transmission systems involving pipelines and compressors [28], 
tackling some of these challenges.

It enables precise tracking of gas flow solutions through simple 
convex optimization. The approach also establishes a reliable gas flow 
model under uncertainties, validated through simulations for different 
gas transmission systems. However, this work has limited applicabil-
ity to hydrogen network transmission planning, as it focuses on gas 
transmission systems. It also lacks a comprehensive exploration of un-
certainties in the gas flow model and their impact on system feasibility. 
Additionally, the absence of real-world validation and case studies 
specific to hydrogen network transmission systems hinders its practi-
cality. Qikun Chen et al. [29] proposed a work utilizing linepack as a 
gas storage buffer, these stations can operate compressors flexibly to 
minimize operational costs under varying electricity prices. The study 
demonstrates significant reductions in operational costs and emissions 
over 20% and 50%, respectively, and assesses the economic feasibility 
of investing in electric-driven compressors, sensitive to future carbon 
prices. However, the scope of this work is limited to Great Britain’s 
gas network, which may raise questions about its generalizability to 
other networks. Furthermore, the focus on only the economic feasibility 
overlooks explicit consideration of environmental and safety aspects.

Moreover, the practical challenges and constraints related to real-
world implementation in hydrogen gas transmission systems are not 
thoroughly addressed, necessitating further investigation for practical 
validation. Khalil et al. [30] present an optimization-based method for 
designing a hydrogen pipeline network, utilizing the existing natural 
gas network as a basis and allowing pipeline conversion. The approach 
achieves a 5.87% cost reduction compared to the initial solution and 
aligns with the potential hydrogen network, Wasserstoffnetz 2030, 
validating its effectiveness. However, the potential limitation of this 
work is that the optimization model might be limited by its reliance on 
certain assumptions and simplifications, which may not fully capture 
the complexity and variability of real-world scenarios. Further studies 
and considerations might be needed to address other factors, such as 
system reliability, and potential regulatory constraints, to ensure the 
feasibility and effectiveness of the hydrogen pipeline network design.

Sai Krishna et al. [31] present a nonlinear optimal control problem 
for intraday gas pipeline network operation, including storage reser-
voirs. It models gas flow dynamics in pipes, compressors, reservoirs, 
and wells using spatial discretization and coupled partial differen-
tial and nonlinear differential–algebraic equations. The objective is 
to maximize economic profit and network efficiency while respecting 
operating limitations. The proposed methodology is validated through 
computational experiments on pipeline test networks, demonstrating 
its effectiveness. However, the proposed work has limitations related 
to the representation of storage reservoir dynamics and the scalability 
of the solution method for larger networks. Adarsh et al. [32] used a 
multi-objective ant colony optimization strategy to minimize operating 
costs in a natural gas pipeline grid. It considers competing objectives 
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of reducing fuel usage in compressors and increasing throughput at dis-
tribution centres. The methodology provides optimal solutions for each 
fuel consumption level on compressors and generates a Pareto front for 
gas distribution points, aiding pipeline managers in cost-effective op-
eration. However, this work focuses solely on optimizing the operating 
costs of the natural gas pipeline grid using the ant colony optimization 
strategy. Further research would be needed to explore the broader 
implications and potential trade-offs involved in optimizing natural gas 
pipeline grids. Chongyuan Shui et al. [33] present a work that applies 
optimal transport theory to optimize natural gas pipeline operations, 
considering line-pack effects. The problem is divided into two stages for 
solvability with existing methods. The proposed model demonstrates 
effectiveness, achieving a 14.5% energy saving in the studied pipeline 
segment. However, the main limitation of this work is its focus on 
optimizing the network while overlooking certain complexities and 
comprehensive modelling features. Additionally, its applicability to 
large-scale networks and integration with other energy systems may 
need further investigation.

Farid [34] identified that a graph theory-based modelling approach 
has also been used in a generalized multi-commodity network flow 
optimization. Although this approach has implemented a notion of 
function heterogeneity, however, it does not integrate a specific state 
and description of the operands and storage units. Finally, the devel-
oped strategies used to optimize the discipline and application-specific 
integrated solutions lack general ability. Furthermore, this work lacks 
empirical validation or practical case studies to demonstrate the effec-
tiveness and applicability of the proposed composite reconfigurability 
measures in real-world manufacturing systems. To further overcome 
these limitations, a hetero-functional graph theory (HFGT) was intro-
duced to study the reconfigurability of network systems [17,35,36] and 
has already been applied to solve several sizeable, flexible engineering 
systems. These include; electric power grids, water distribution systems, 
transportation networks, healthcare management systems, and other in-
terdependent infrastructures. Schoonenberg and Fard [22] have further 
developed an HFGT to include a tensor-based formulation to introduce 
system flexibility. Generally, an HFGT has introduced many modelling 
constructs not found in the traditional graph theory approach [37].

The limitations in existing optimization strategies for hydrogen 
flow networks stem from their focus on gas networks, which lack 
applicability to hydrogen systems due to differences in storage and flow 
dynamics [27]. Many models, such as those by Khalil et al. [30] and 
Qikun Chen et al. [29], rely on simplifications like using natural gas in-
frastructure, limiting their generalizability and robustness in real-world 
scenarios. Additionally, these studies inadequately address uncertainty 
in flow dynamics, environmental impacts, and safety concerns [27,29], 
which are critical for hydrogen networks. Most approaches also lack 
real-world validation, particularly in large-scale networks [31,32], and 
face challenges with scalability [33], highlighting the need for more 
flexible and validated models that can handle the unique complexities 
of hydrogen transmission.

3. System model

This section explains the preliminaries of the study, the system 
model and its layout, the mathematical models of H2 gas flow rate, 
the storage model, the objective function, and the constraints [23,30,
33,38].

3.1. Test case selection

For implementation, Belgium’s gas network (Fig.  1) is selected for 
this study due to its strategic importance, publicly available dataset and 
comprehensive infrastructure, which provides a well-balanced test case 
for hydrogen transmission optimization. Because, Belgium’s gas net-
work is characterized by a combination of high-and-low-gas pipelines, 
compressor stations and their locations, and storage units, making it 
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Fig. 1. Schematic diagram of the low and high-pressure Belgium Gas Network, 
highlighting the 13 nodes (Table  2) and the corresponding flow directions.

an ideal representation of regional & transnational gas flows. This 
network also serves as a transit hub for natural gas between multiple 
European countries, such as France, Netherlands, Norway, Luxembourg 
and Germany. Eventually, this makes the Belgian network a complex 
yet practical case for hydrogen conversion, ensuring that the results can 
be generalized and adapted to other networks within Europe. Addition-
ally, the geographic location of Belgium has established connections to 
other gas sources such as Dutch, Algerian, and Norwegian gas, which 
make it particularly suitable for investigating the dynamic interplay 
of hydrogen transmission, storage, and distribution in a real-world, 
heterogeneous network setting.

3.2. Preliminaries

This work focuses on the Belgium gas distribution network depicted 
in Fig.  1, highlighting key design and operating factors such as the 
total number of nodes, storage unit supply locations, and destination 
nodes. The network is engineered to transport a predetermined quantity 
of H2 gas from single or multiple points to others, with well-defined 
initial and final states (i.e., supply pressure, composition, temperature). 
It consists of several key nodes categorized by their roles. The high 
gas nodes include Gravenvoeren, Liege, Namur, Sinsin, Arlon, Mons, 
Blarengies, and Anderlues. The low gas nodes are Zeebrugge, Poppel, 
Hasselt, and Brugge. Additionally, there are gas storage units near 
Antwerp and Blarengies. The network also features connected cities 
such as Antwerp and Luxembourg, with flow directions indicated for 
exports to France and other countries.

We have considered this Belgium gas network as a model for our 
hydrogen gas network (Fig.  1) that consists of supply sources (𝑟 ∈ R), 
set of compressor units (𝑛 ∈  ), storage units (𝑠 ∈ ), junctions 
(𝑗 ∈  ) and flow networks. These networks are composed of a 
storage facility, arcs & nodes (𝑎, 𝑏) of pipeline network, compressor 
units, and distribution sites. The optimal design of a transmission 
and distribution network involves capital expenditures, operational & 
maintenance costs, depreciation costs, and return on investment (ROI), 
respectively. Before designing these networks, various parameters must 
be considered to ensure optimal operation:

• Required pressure: to ensure the required gas pressure at distribu-
tion locations, determining the optimal number and location of 
compressor units becomes crucial within a given time horizon.
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• Network design: when the initial network design allows for po-
tential expansion based on future requirements, obtaining the 
optimal solution for the extended design is essential to achieve 
cost-effective expansion and operation.

• Network parameters: the design of single or interconnected net-
works should include optimal parameters such as diameter,
length, number of nodes, and arcs to manage gas pressure at the 
supply side effectively.

• Initial conditions: during implementation, certain parameters are 
fixed, such as the initial discharge pressure and flow rate at the 
Gravenvoeren node (Fig.  1) is fixed at 500 psi and 600 MMCFD, 
which vary over time with changes in demand. Similarly, pipeline 
length and diameter in all branches are fixed (Table  3), while the 
flow across nodes is adjusted to meet the demand.

• Flow condition: The steady-state equations presented in Section 3.3 
are designed to model gas flow while focusing on optimizing the 
gas network’s cost parameters, including capital cost, operating 
cost, pipe capital cost, compressor annual cost, and the selec-
tion of optimal compressors, length & diameter of pipe to meet 
demand requirements (see Table  1). This model also integrates 
fixed storage (10% of total demand) considerations within the 
operating time interval (unit time), which allows for a simplified 
representation of storage behaviour in steady-state conditions.

• Boundary conditions: the optimization program incorporates these 
conditions and a set of constraints as detailed in (Sections 3.3, 3.4,
3.7 and 3.8) to obtain globally optimal results, achieving minimal 
cost and computational complexity.

Based on these parameters, a cost minimization objective function is 
formulated to determine (i) the total number of compressor units, 
(ii) the length of supply and distribution pipeline segments, (iii) the 
diameter and length of pipelines, and (iv) the supply and discharge 
pressure at each compressor unit.

The primary objective of this study is to minimize costs over one 
year, accounting for maintenance, capital, and operational costs. The 
design challenge does not constrain the number of compressor units 
or locations, lengths of pipeline segments, diameters of pipes con-
necting different branches, or locations of branching points. Thus, 
the objective function is modelled as a mixed integer nonlinear pro-
gramming (MINLP) problem. Before detailing the proposed network 
layout, it is crucial to distinguish between two optimization problem 
types. First, if the total cost of the H2 gas compressors is a linear 
function of horsepower, the problem can be addressed using nonlinear 
programming (NLP). Alternatively, suppose the total cost includes a 
fixed capital component for zero horsepower. In that case, the problem 
becomes more complex and is better handled using branch-and-cut 
or branch-and-bound algorithms. While these approaches can provide 
optimal results, they might also increase the system’s complexity if 
the objective function and constraints are not precisely defined. The 
problem formulation encompasses several aspects: (i) the H2 gas flow 
rate, (ii) the pipeline configuration design, (iii) the control and design 
variables, (iv) the cost minimization objective function, and (v) the 
equality, inequality, and binary constraints. 

3.3. Gas flow rate

Generally, the common way to express a gas flow rate (𝑞𝑔) using 
the Weymouth Equation in terms of cubic meter per hour (m3∕h) at 
standard conditions for isothermal flow is written as [39,40] in Eq. (1): 

𝑞𝑔 = 1.361 × 10−7

√

√

√

√

𝑝2𝑑 − 𝑝
2
𝑠

𝑓.𝑚.𝑇 .𝑆𝑔
d5 (1)

where 𝑝 denotes gas pressure (psi), 𝑇  denotes the temperature in (◦K), 
𝑆𝑔 denotes the relative density of the gas in (0.005229 lb/ft3), [28], 
  is the length of a pipe in (km), d denotes the internal diameter 
𝑚
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of a pipe in (mm), and 𝑓 is the friction factor which depends on the 
material. However, other equations like Weymouth and Panhandle can 
also be used to express the gas flow in long pipelines. It is also assumed 
that the hydrogen flow rate is unidirectional in each pipe as denoted 
by Eq. (2): 

𝑞𝑡ℎ ≥ 0; ∀𝑛𝑔 , 𝑡 ∈  , (2)

For high-pressure and long pipes, the Weymouth equation is most 
widely used due to efficiency and is written as follows in Eq. (3): 

𝑞𝑡ℎ = (2.61 × 10−8) × 𝑑2.667

√

√

√

√

[

𝑝2𝑑 − 𝑝
2
𝑠

𝑓.𝑚.𝑆𝑔

]

288
𝑇
,∀𝑡 ∈  (3)

where 𝑝𝑑&𝑝𝑠 denote discharge and suction pressure, while friction 
factor in Eq. (3) is 𝑓 = 0.094

𝑑1∕3
. Furthermore, this friction factor is the same 

as obtained from the Moody diagram [41] for the 20-inch pipeline. 
However, the friction factor is larger for smaller than 20-inch diameter 
pipe and vice versa. To calculate the pressure drop (𝜁 in %) over 𝑡
in pipe 𝑛𝑔 , the following expression can be used that is presented in 
Eq. (4),[23]: 

𝜁 𝑡𝑛𝑔 =

(

𝑝𝑡𝑑 − 𝑝
𝑡
𝑠

𝑝𝑡𝑑 − 𝑝
𝑡
𝑎
× 100

)

,∀𝑡 ∈  (4)

where 𝑝𝑎 = 14.73 psia denotes the atmospheric pressure.

3.4. Pipeline design

Fig.  1 shows the considered network layout & configuration and 
notations employed for the compressors in terms of nodes, and the 
H2 gas pipeline segments. An interconnected node can either represent 
each compressor unit and an arc represents each pipeline. Let 𝑛 ∈ 
represent the total number of possible compressor stations in each 
branch 𝓁 = 3. Let the set of possible junctions denoted by |𝑗| =  , while 
the fixed or dynamic gas demand 𝑔𝑑,𝑡 over time interval 𝑡 is applied 
over the junction(s) (𝑗 ∈  ). It is also assumed that the value of the gas 
demand 𝑔𝑑,𝑡 is known in advance for the junctions 𝑗 ∈   and 𝑡 ∈  . 
Let 𝑎, 𝑏 denote the gas pipes/nodes that carry the non-negative flow 𝑞𝑎,𝑏
from node 𝑎 to node 𝑏. When the gas distribution network is designed, 
it is equally important to ensure gas flow continuity (i.e., gas supply 
- gas demand = 0); since the pressure increases at the compressor 
unit and decreases along the junctions. Therefore, the consideration 
of the gas pressure drop/loss factor must also be ensured across all 
the junctions in the network. In addition, the H2 transmission and 
distribution network is assumed to be horizontal. For each pipeline 
configuration, every node and arc is labelled, separately. For example, 
total number of compressors 𝑛 =

∑
𝑡=1 

𝑡, the initial suction pressure 
𝑝𝑠,𝑛 at 𝑡 − 1, the discharge pressure 𝑝𝑑,𝑛, and the length of the pipeline 
segment  and respective diameter d(𝑛 + 1). The gas demand flow 
balance at junction 𝑗 ∈   is represented by the Eq. (5), while the inflow 
and outflow must always be equal to meet the demand capacity over 
the given time. 

𝑔𝑡𝑑 =

∑

𝑡=1

∑

𝑎∈𝑞𝑖𝑛(𝑏)
𝑞𝑡𝑎𝑏 +

∑

𝑐∈𝑞𝑜𝑢𝑡(𝑏)
𝑞𝑡𝑏𝑐 , ∀𝑡 ∈  , (5)

where, 𝑎 ∈ 𝑞𝑖𝑛(𝑏)&𝑐 ∈ 𝑞𝑜𝑢𝑡(𝑏) denote the nodes supplying and carrying 
gas flow from junction 𝑏 (i.e., 𝑎 → 𝑏 and 𝑏 → 𝑐). The steady-state gas 
flow equation over time (𝑡 ∈  ) can be written as Eq. (6): 


∑

𝑡=1

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝛿𝑞𝑡𝑎𝑏 +

∑

𝑛=1
𝛼𝑡𝑛
⎞

⎟

⎟

⎠

−
⎛

⎜

⎜

⎝

R
∑

𝑟=1
𝑞𝑡𝑟 +


∑

𝑠=1
𝑞𝑡𝑠𝑡 +


∑

𝑛=1
𝛽𝑡𝑐𝑝

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

= 0,∀𝑡 ∈  , (6)

where 𝛿 denotes the probability to analyse uncertainty in the networks 
optimization problem, 𝛼𝑡𝑛 denotes loss due to internal friction, 𝛽𝑡𝑐𝑝
represents the compression loss over time 𝑡 which is due to the working 
5 
of a compressor, and 𝑞𝑡𝑟 denotes the flow over 𝑡 at supply resources, 𝑞𝑡𝑠𝑡
denotes the flow at storage sources over 𝑡, respectively. 
(𝜉𝑡−1𝑛 + 𝜑𝑡𝑛 − 𝜓

𝑡
𝑛) − 𝜉

𝑡
𝑛 = 0,∀𝑛, 𝑡, (7)

Eq. (7) denotes the switching states of the hydrogen compressor unit. 

𝐅𝑎𝑏 =

∑

𝑡=1

∑

∀𝑛𝑔

{

𝑞𝑡𝑎𝑏 + 𝑔
𝑡
𝑑
}

, ∀ 𝑡 ∈  , 𝑛𝑔 , (8)

Eq. (8) shows the gas flow balance (𝐅𝑎𝑏), 𝑛𝑔 denotes the number of 
pipes, 𝑞𝑎𝑏 denotes the gas flow from node 𝑎 to 𝑏 and 𝑔𝑡𝑑 denotes the 
H2 demand over a given time interval. 𝐇𝑎 and R𝑎𝑏 denote the nodal 
head and the coefficient of resistance in Eq. (9), while the 𝑓 defines 
the exponent of the flow. The H2 gas flow balance is denoted by 
Eq. (9), [42–47]. 
𝐇𝑎 −𝐇𝑏 = R𝑎𝑏𝑞𝑎|𝑞𝑏|

𝑛́−1, (9)

Eq. (9) denotes the pressure head loss across all pipelines. It is further 
assumed the system operator has control over the minimum pressure 𝐇𝑡

𝑏
to fulfil the flow demand at all junctions 𝑗. Let 𝐇𝑡

𝑏 denote the current 
pressure head to satisfy the required head level 𝐇𝑡

𝑏 at time 𝑡 (Eq. (10)). 

𝐇𝑡
𝑏 ≥ 𝐇𝑡

𝑏, (10)

where the gas flow among all the nodes is denoted by Eq. (11). 
𝑞𝑎𝑏 =

𝐇𝑎−𝐇𝑏
R0.54
𝑎𝑏 |𝐇𝑎−𝐇𝑏|0.46

. (11)

𝐇𝑗,𝑡 ≥ 𝐇𝑗 , ∀ 𝑗 ∈  , 𝑛𝑔 ,& 𝑡 ∈  (12)

Eq. (12) denotes the minimum allowable flow over 𝑡 must satisfy the 
pressure head 𝐇𝑗 . It is defined as 𝐇 = {𝐇𝑗 |𝑗| ∈  } and 𝐆 = {𝐺𝑑,𝑡|𝑗| ∈
 , 𝑡 ∈  }. Here, the optimal selection of pressure head loss depends 
on the optimal selection of ń in Eq. (9). The Hazen–Williams and 
Darcy-Weisbach with ń=1.852 and ń=1.852 relationships are being 
widely adopted for pressure head calculation [46,47]. Both the Hazen–
Williams and Darcy-Weisbach relationships can be alternatively used to 
calculate pressure head loss. However, the former involves less complex 
calculations as compared to the latter one. Similarly, the head loss 𝓁𝑡𝑎𝑏
of pipes (𝑎𝑏) carrying non-zero flow at time instant 𝑡 can be computed 
using Darcy Weisbach Eq. (13): 
𝓁𝑡𝑎𝑏 = 𝐅𝑎𝑏 × (𝑞𝑡𝑎𝑏)

2,∀𝑡 ∈  (13)

where, 𝐅𝑎𝑏 is a constant having non-negative value which is equal to 
𝑞𝑎𝑏𝓁𝑎𝑏

2𝑑𝑎𝑏𝑆2
𝑎𝑏𝑔

≥ 0. Where 𝑙𝑎𝑏&𝑑𝑎𝑏 denote the length and diameter of the pipe 
(in meter), 𝑔 is the acceleration of gravity (in m∕s2), and 𝑆𝑎𝑏 represents 
the cross-section area of the pipes. At each time 𝑡 ∈  , pressure head 
𝐻 must satisfy the constraint of Eq. (14): 
0 ≤ 𝐇𝑗 ≤ 𝐇𝑗 (14)

where, 𝐇𝑗 and 𝐇𝑗 denote the minimum and maximum head at 𝑗 over 
time interval 𝑡. Thus for each junction 𝐽 , the values of 𝐻 can be defined 
as; 𝐇 = 𝐻𝑗 |𝑗 ∈  |.

Furthermore, the H2 supply tanks and/or reservoirs can be modelled 
by considering the volume of gas at a certain time. Let the volume H2 in 
the supply tanks be denoted by 𝑣𝑡𝑔 . Then the supply balance constraint 
at time 𝑡 is written as Eq. (15): 
𝑣𝑡𝑔 = 𝑣𝑡−1𝑔 + 𝑞𝑡𝑎𝑏 (15)

0 ≤ 𝑣𝑡𝑔 ≤ 𝑣𝑡𝑔 (16)

Eq. (16) establishes the lower limits on the volume of H2, and the 
variable 𝑣𝑡𝑔 represents the maximum allowable volume of H2 at time 
𝑡. Algorithm 1 explicitly details the gas flow management process, 
dynamically adjusting the flow based on real-time demand (𝑝𝑡 ). This 
𝑑
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algorithm provides a responsive mechanism to balance hydrogen pro-
duction and storage with consumer and industrial needs, thereby opti-
mizing operational efficiency and reliability. Integrating these elements 
within our model highlights the interdependencies between supply lim-
its and demand fulfilment, underscoring the complexity of efficiently 
managing hydrogen distribution networks.
Algorithm 1: Hydrogen Flow Procedure based on Demand Capac-
ity.
Input: 𝑡, 𝑛, 𝑔𝑡𝑑
Output: 𝐅𝑎𝑏
if 𝑔𝑡𝑑 ≤ 𝑞𝑡𝑎𝑏 +  𝑡𝑔,𝑣 then

𝑞𝑡𝑎𝑏 = 𝑞𝑡𝑎𝑏 −  𝑡𝑔,𝑣 &  𝑡𝑔,𝑣 ℎ𝑎𝑠 𝛾 𝑡 state else if 𝑔𝑡𝑑 > 𝑞𝑡𝑎𝑏 then
𝑞𝑡𝑎𝑏 = 𝑞𝑡𝑎𝑏 +  𝑡𝑔,𝑣 &  𝑡𝑔,𝑣 ℎ𝑎𝑠 𝛾 𝑡 state 
else if 𝑞𝑡𝑏𝑐 ≤  𝑡𝑔,𝑣 then

𝑞𝑡𝑎𝑏 = 𝑞𝑡
end 

end 
end 

3.5. Pump model

Hydrogen pumps consume energy to elevate the nonzero (𝐇𝑗 −𝐇𝑖 ≥
0) head along the pipes 𝑛𝑔 over time 𝑡, given by Eq. (17), 
𝐇𝑗 −𝐇𝑖 ≤ 𝐴𝑖,𝑗 (𝑞𝑡𝑖,𝑗 )

2 + 𝐵𝑖𝑗 (𝑞𝑡𝑖,𝑗 ) + 𝐶
𝑡
𝑖𝑗 (17)

where, 𝐴𝑖,𝑗 , 𝐵𝑖𝑗 and 𝐶𝑖𝑗 are positive constants of a quadratic cost 
function that supply electric power to the pumps on each pipe over 
time 𝑡.

3.6. Pressure valves

The hydraulic head pressure is changed due to minimum pressure 
requirements 𝐇𝑡

𝑟 along pipes (𝑛𝑔) over given time 𝑡 as given below: 

𝐇𝑗 −𝐇𝑖 = 𝐇𝑝,𝑡
𝑏,𝑟,∀𝑡 ∈  (18)

3.7. Storage model

In this paper, each storage unit is modelled as a node integrated 
across the network. Let 𝑔 represent the H2 storage facility and  𝑡𝑔,𝑣
indicate the volume of H2 in each facility at time 𝑡. The H2 balance 
constraint at each storage facility for any time 𝑡 is expressed by Eq. (19), 
which ensures that the difference between the inflow 𝑎 ∈ 𝑓𝑖𝑛(𝑏) and 
outflow 𝑐 ∈ 𝑓𝑜𝑢𝑡(𝑏) at node ‘‘b’’ remains constant over the specified time 
interval. 

 𝑡𝑔,𝑣 =  𝑡−1𝑔,𝑣 +

(

∑

𝑎∈𝑓𝑖𝑛(𝑏)
𝐅𝑡𝑎𝑏 −

∑

𝑐∈𝑓𝑜𝑢𝑡(𝑏)
𝐅𝑡𝑏,𝑐

)

,∀𝑡 ∈  (19)

 𝑡𝑔,𝑣 ≤  𝑡𝑔,𝑣 ≤  𝑡𝑔,𝑣 (20)

Where, the variable  𝑡−1𝑔,𝑣  denotes the volume of H2 in 𝑡−1 time slot. The 
upper  𝑡𝑔,𝑣 and lower  𝑡𝑔,𝑣 limits on the H2 storage facility are denoted 
by Eq. (20). Consequently, Eq. (21) denotes the state equation of the 
storage unit. 
 𝑡0 = 𝜎 ,∀ , 𝑡 = 0, (21)

For the pressure head at the outlet of the water storage facility, 
𝐻 𝑡

𝑔
 is modelled over time 𝑡 based on water demand or flow capacity. 

Changes in the head at the storage valve relative to the gas volume are 
described by Eq. (22)

𝐻 𝑡
𝑔

−𝐻 𝑡−1
𝑔

=

(

∑

𝐅𝑡𝑎𝑏 −
∑

𝐅𝑡𝑏,𝑐

)

,∀𝑡 ∈  (22)

𝑎∈𝑓𝑖𝑛(𝑏) 𝑐∈𝑓𝑜𝑢𝑡(𝑏)

6 
3.8. Control variables

The pipeline segments shown in Fig.  1 have a different set of vari-
ables: (i) the volumetric H2 gas flow rate (𝑄𝑎,𝑏), (ii) the H2 discharge 
pressure (psi) of the 𝑛th compressor (𝑝𝑑,𝑛), (iii) the suction pressure 
(psi) of 𝑛th compressor (𝑝𝑠,𝑛), (iv) the diameter (d) and length () of the 
transmission network. Since, the mass flow rate is considered dynamic, 
which changes with the demand requirement. Therefore, the associated 
variables need to be evaluated for each segment over the given time 𝑡.

4. Problem formulation

This work aims to calculate the total cost, including both the operat-
ing and maintenance expenses of installed compressors and the capital 
cost (𝑐𝑎𝑝) of pipelines and compressors. Notably, each compressor 
is assumed to be adiabatic, with an inlet temperature that equals 
the ambient temperature. For analysis purposes, a lengthy segment of 
the Belgium gas network, starting at the Norwegian supply unit in 
Gravenvoeren (node 1, Fig.  1), is considered to maintain the ambient 
temperature before reaching the next nodes. Although the actual 𝑐𝑎𝑝
of each pipeline segment primarily depends on the diameter (d) and 
length (), this study simplifies the calculation by assuming a uniform 
cost of 870/inch/mile/year. Typically, the rate of work (𝑊 ) performed 
by a single compressor is defined as shown in Eq. (23): 

𝑊𝑛 = 𝛾 × 𝑞𝑎,𝑏
(

𝑘
𝑘−1

)

× 𝑠𝑇

[

( 𝑝𝑑,𝑛
𝑝𝑠,𝑛

)𝑧(𝑘−1)∕𝑘
− 1

]

(23)

where 𝛾 is a constant valued at 0.08531, 𝑞𝑎,𝑏 represents the non-
negative dynamic gas flow rate under standard temperature conditions, 
𝑘 = 𝐶𝑝∕𝐶𝑣 for gas at suction condition is 1.41, 𝑧 denotes the compress-
ibility factor at suction conditions ranging from 1.0 to 1.05, and 𝑠𝑇
refers to the suction temperature, set at 520 ◦K.

Yearly operating and maintenance costs for the compressors are 
generally linked to their capacity and are estimated to range from 
(8–14$∕horsepower/year + 10, 000$), covering installation, foundation, 
and other related expenses. Each compressor operates under specific 
equality and inequality constraints to ensure that the discharge pressure 
remains adequate relative to the suction pressure. Nonetheless, factors 
such as friction, leakage, and temperature variations often lead to 
pressure losses, making it challenging to maintain a consistent balance 
between discharge and suction pressures.

4.1. Pressure & compression constraint

This study imposed a constraint Eq. (24) so that a discharge pressure 
is always greater than or equal to the suction pressure [23]. 
0 ≤ 𝑝𝑡𝑠,𝑛 ≤ 𝑝𝑡𝑑,𝑛,∀𝑛 ∈  , 𝑡 ∈  (24)

0 ≤
𝑝𝑡𝑑,𝑛
𝑝𝑡𝑠,𝑛

≤ (
𝑝𝑡𝑑,𝑛
𝑝𝑡𝑠,𝑛

),∀𝑛 ∈  , 𝑡 ∈  (25)

Eq. (25) denotes the compression ratio 𝑝
𝑡
𝑑,𝑛
𝑝𝑡𝑠,𝑛

 must be within maximum 

limit ( 𝑝
𝑡
𝑑,𝑛
𝑝𝑡𝑠,𝑛

) for safe operation.

4.2. Constraint on limits

(1 − 𝛿′)𝑝𝑡𝑑,𝑛 ≤ 𝑝𝑡𝑑,𝑛 ≤ 𝑝𝑡𝑑,𝑛 (26)

(1 − 𝛿′)𝑝𝑡𝑠,𝑛 ≤ 𝑝𝑡𝑠,𝑛 ≤ 𝑝𝑡𝑠,𝑛 (27)

𝑛 ≤ 𝑛 ≤ 𝑛 (28)

d ≤ d ≤ d (29)
𝑛 𝑛 𝑛
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Eqs. (26)–(29) set the lower and upper limits on demand, supply, 
length, and diameter variables. The variable 𝛿 represents the uncer-
tainty in supply and discharge pressures. For implementation purposes, 
the length of the transmission network is held constant. Consequently, 
an equality constraint is applied to the transmission network, which 
consists of three branches (𝓁, Fig.  1), as follows: 

𝓁𝑛 =

∑

𝑗=1
𝓁𝑗 , (30)

The total cost is now represented by Eq. (31): 

𝑡 =

∑

𝑡=1


∑

𝑛=1
𝑊 𝑡
𝑛 + (𝜂 × 𝑡𝑜𝑝) + 𝑡𝑐𝑎𝑝 +


∑

𝑡=1


∑

𝑗=1
𝑡𝓁 × 𝑡𝑗 × d𝑡𝑗

+
∑
𝑡=1

∑
𝑠=1 

𝑡
𝑔,𝑣 + (𝛾 𝑡 + 𝛾 𝑡)

(31)

The cost reduction objective function (𝑧) over a given time 𝑡 for (𝑗) and 
(𝑠) is denoted by Eq. (32): 

𝑚𝑖𝑛𝑧 =

∑

𝑡=1
𝑡 (32)

subject to: Eqs. (5), (6), (9) to (16), (19), (20), (22) and (24) to (30)
where 𝑜𝑝($∕hp-year), 𝑐𝑎𝑝($∕hp-year), and 𝓁($∕in-mile-year) repre-
sent the yearly operating, capital, and pipeline costs, respectively. 
𝑗 (mile) and d𝑗 (in) specify the length and diameter of the pipeline 
segment, respectively. The variable 𝜂 in 𝑜𝑝 indicates that operating 
costs can vary based on other cost factors.

4.3. Uncertainties in Monte Carlo

The Monte Carlo method is implemented to incorporate and analyse 
the uncertainties in input data in (𝑝𝑑 , 𝑝𝑠,, d, 𝑟𝑎𝑡𝑖𝑜(

𝑝𝑡𝑑,𝑛
𝑝𝑡𝑠,𝑛

), 𝑞). The varia-
tion in parameters is captured by generating multiple scenarios. These 
parameters are varied within predefined bounds (±10% under normal 
distributions across 100 iterative scenarios.) The results from each 
scenario were then evaluated to analyse the overall system performance 
under uncertainty. The probabilistic outputs helped us estimate opti-
mal solutions while accounting for variations in key parameters, thus 
adding robustness to the decision-making process regarding pipeline 
infrastructure and compressor selection.

5. Solution approach and methodology

The proposed system model consists of 13 nodes and a variable 
number of compressors (𝑛), dynamically selected by the control algo-
rithm during operation time (𝑡) based on demand, supply pressure, and 
storage volume considerations. In the model shown in Fig.  1, the ob-
jective function can be solved using NLP algorithms when considering 
the capital cost in Eq. (31). In that case, solving the objective function 
requires branch-and-cut or branch-and-bound methods to handle the 
nonlinear control variables (Eqs. (13), (15), (23)). The branch-and-
bound approach effectively reduces complexity by eliminating unnec-
essary solution sets. In this method, a tree structure is formed based 
on the network’s nodes and branches, where each node represents 
an optimization problem (Eq. (31)) with or without integer variables. 
Node 1 in the proposed model represents the primal optimization 
problem, including the capital cost. The solution obtained at node 1 
is a lower bound for the subsequent optimization problems involving 
the cost function. If the solution at node 1 is infeasible, the process 
is restarted. However, the solution is considered valid if feasible, even 
considering the initial capital cost at zero horsepower.

The proposed model is evaluated using different algorithms, includ-
ing deterministic, stochastic, and dynamic approaches, to enhance the 
solution’s effectiveness in analysing convergence and optimality. These 
methodologies were selected to highlight the efficiency of our dynamic 
optimization approach. We benchmarked it against deterministic and 
7 
stochastic methods, both of which are standard in network optimiza-
tion but have limitations in handling uncertainties and computational 
costs. Our method, incorporating Monte Carlo scenario analysis, out-
performed these approaches, reducing computational time by 39.13% 
and operational costs by 25.02%. In the deterministic approach, the 
initial pressure at supply points (Eqs. (24)–(27)), flow, and cost are 
kept fixed during implementation. The problem is transformed into a LP 
formulation by fixing the integer variable, yielding an integer optimal 
solution. The initial solution (Mixed-Integer Programming - MIP) is 
achieved in 92 iterations, and the second solution (LP) is obtained in 77 
iterations. During implementation, the operating cost of compressors 
(Eq. (31)) is observed as dynamic due to the behaviours of decision 
variables. For simulation purposes, a gas storage unit is integrated at 
node 9, adding complexity to finding an exact optimal solution. To 
address this challenge, we utilize a ‘‘discrete constraint optimization’’ 
strategy with a dynamic search method. The objective function is solved 
in 64 iterations to obtain an integer optimal solution, followed by 
fixing integer variables for solving second-stage LP problems as in the 
deterministic approach. The first-stage MIP is solved in 70 iterations, 
and the reduced LP problem is solved in 56 iterations. The overall 
objective function (Eq. (31)) is optimized using the CONOPT solver 
in 59 iterations. Finally, we implement a dynamic search algorithm 
to solve the network optimization problem considering dynamic flow, 
storage integration (Eqs. (19), (20) and (22)), and dynamic operating 
cost. The MIP and LP solutions are obtained in 66 and 65 iterations, 
respectively, both proven to be optimal. Notably, the NLP with discrete 
optimization strategy and CPLEX solver achieves faster convergence 
compared to the deterministic and stochastic strategies.

The optimization problem at node 2 is also nonlinear, with multiple 
compressors considered based on branch length. The decision tree in a 
network graph descends in each iteration, constraining the solutions 
until the global solution is obtained. The lower and upper bounds for 
each compressor in each respective pipeline remain constant. It is worth 
noting that the solution obtained at node 𝑛 in a decision tree could be 
feasible but not necessarily optimal. Therefore, we may call it a viable 
or general solution. To ensure optimality, the implementation continues 
until the entire network is configured with reduced cost.

Finally, in the context of gas network optimization using graph the-
ory modelling, a combination of these approaches might be most effec-
tive. A dynamic approach captures time-dependent aspects, a stochastic 
approach handles uncertainty in demand and supply, and a determin-
istic approach finds precise solutions for certain fixed conditions. The 
specific trade-offs between accuracy, computational complexity, and 
ability to handle uncertainty will guide the choice of the most suitable 
approach or combination of approaches. It is essential to consider the 
problem’s characteristics and optimization objectives before deciding 
on the methodology.

Throughout the paper, all variables are defined with their values. 
The following assumptions are made in this work:

• Demand Capacity : the value of the gas demand (𝑔𝑡𝑑) is known in 
advance for the set of junctions (𝑗 ∈  ) over a given time  .

• Flow Rate: nodes ‘‘a’’ and ‘‘b’’ denote the nodes that carry the 
non-negative flow (𝑞𝑎,𝑏) of gas from node ‘‘a’’ to node ‘‘b’’.

• Supply-Demand Ratio: the gas distribution network is designed 
with an initial assumption that gas supply and demand are zero 
during the operation time. This is ensured through the optimal 
solution.

• Network Layout : the gas transmission and distribution network is 
assumed to be horizontal.

• Network Length: the initial length of the distribution network is 
fixed, however, the optimization algorithms optimize the length 
and diameter to minimize the overall cost as detailed in Table  3.



M.B. Rasheed et al. Journal of Energy Storage 132 (2025) 117840 
5.1. Major challenges and simplifications of the model

This section describes the major challenges and their simplifica-
tions in solving the gas network optimization problem. These can be 
enumerated as follows:

• Pressure and Flow Characteristics: hydrogen gas exhibits varying 
pressure and flow characteristics over time, especially when de-
mand is dynamic. Thus, the network must be designed to meet 
demand requirements without losing pressure. We address this by 
considering dynamic gas flow rates (Eqs. (1), (3) to (6) and (8)). 
The demand capacity varies over time, and pressure drop (Eqs. 
(4), (27) and (28)) is implemented as a constraint to maintain the 
supply–demand ratio (Eqs.  (25) and (27)) during the implementa-
tion process. Additionally, pipeline design ensures the nodal head 
pressure is maintained (Eq.  (9)–Eq.  (16)) over time.

• Demand Management : storage units allow for decoupling produc-
tion and consumption rates. Excess capacity can be stored for later 
use during low-demand or high-production periods, ensuring a 
stable and reliable supply. Coordinating production and storage 
is critical to avoid wastage and inefficiencies. Matching supply 
and demand with storage capacity is complex, especially with 
intermittent renewable energy sources. This problem is modelled 
in Section 3.7 and considered a constraint in solving the objective 
function (Eq.  (24)).

• System Modelling Complexity : integrating storage into the multi-
objective optimization model may increase the system modelling 
complexity. Handling multiple parameters, constraints, and objec-
tives related to storage can be challenging for the optimization 
algorithm. Therefore, the mathematical models are designed to 
ensure a globally optimal solution without violating any con-
straints.

• Feasibility & Practicality of Proposed System: it is also equally 
important to ensure the feasibility of using existing natural gas 
pipelines to transport pure hydrogen. Recent studies and reports, 
including those by the European Hydrogen Backbone Initiative 
(EBH) [48] and Gas for Climate (2020) [49], confirm the prac-
ticality of repurposing natural gas infrastructure for hydrogen 
transmission. It is generally feasible to use existing pipelines 
with minimal modifications for low-pressure hydrogen networks. 
However, high-pressure networks may require adaptations such 
as material upgrades and compression technology enhancements 
due to hydrogen’s smaller molecule size and potential for em-
brittlement in steel pipelines [50]. For example, the UK’s HyNet 
Northwest project has demonstrated the successful retrofitting of 
natural gas pipelines for hydrogen transport under real-world con-
ditions [51,52]. Furthermore, the EHB study provides a roadmap 
for transitioning existing gas networks to accommodate hydrogen 
by 2040, validating the practicality of such approaches across 
multiple European countries, including Belgium EHB.

6. Results and discussion

In the proposed system model (refer to Section 3), we apply our 
approach to the Belgium gas network (Fig.  1), a network comprising 13 
nodes, including a single supply point and a storage unit. This particular 
network was selected for its variability in gas demand across different 
nodes (such as Luxemburg, Blaregnies, and Liege), which effectively 
represents realistic usage patterns. Additionally, the variation in de-
mand ratios over a specified period, 𝑡, is involved in demonstrating 
the model’s convergence rate. Table  1 provides the variables and their 
values used in this implementation, while Table  2 lists the nodes 
alongside their corresponding city names.

The flowchart in Fig.  2 provides a detailed step-by-step process for 
optimizing the hydrogen network transmission. The process begins with 
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Table 1
Simulation variables.
 Variable Meaning Value  
 𝑘 suction condition 1.41  
 𝑧 compressibility factor 1.00  
 𝑠𝑇 suction temperature 60 ◦C  
 𝜂 compressor cost 70 ($/hp/year)  
 𝑙 pipe capital cost 870 ($/inch/mile) 
 𝑜𝑝 operating cost 8 ($/hp)  
 𝑝𝑠 suction pressure 198.4 (psi)  
 𝑝𝑠 max. suction pressure 1000 (psi)  
 𝑝𝑠 min. suction pressure 200 (psi)  
 𝑝𝑑 max. discharge pressure 1000 (psi)  
 𝑝𝑑 min. discharge pressure 200 (psi)  
 𝑞 max. discharge pressure 600 (psi)  
 𝑞 min. discharge pressure 200 (psi)  
 d max. diameter of pipe (initial) 36 (inch)  
 d min. diameter of pipe (initial) 3 (inch)  

Table 2
Nodes and corresponding cities in 
the Belgium gas network.
 Node City  
 1 Gravenvoeren  
 2 Bernaeu  
 3 Liege  
 4 Warnand Dreye 
 5 Wanze  
 6 Sinsin  
 7 Arlon  
 8 Luxembourg  
 9 Namur  
 10 Anderlues  
 11 Storage  
 12 Peronnes  
 13 Blaregnies  

setting the number of iterations, which defines the total computational 
runs for optimization. Next, the initialization of variables, such as flow 
rates, demand profiles, and key parameters for pipelines, compressors, 
and storage, is performed. After this, the objective function, constraints, 
and limits are established to minimize both computational and oper-
ational costs. The solver selection follows, where the GAMS system, 
using the CONOPT solver, is employed due to its effectiveness in 
handling large-scale, non-linear optimization problems common in gas 
network planning. Once the problem is solved, the solution is checked 
for optimality. If the solution is not optimal, the model loops back, 
adjusting variables as necessary. If an optimal solution is found, the 
model proceeds to Monte Carlo simulation with uniform distribution 
for scenario analysis, which tests the robustness of the solution under 
uncertain conditions (e.g., fluctuations in demand or supply). If the 
solution still proves to be optimal after scenario analysis, the results are 
saved. Otherwise, adjustments are made, and the problem is resolved. 
The loop continues until the total iterations are exhausted or the stop-
ping criteria (such as convergence or stability of the solution) are met. 
The iterative and scenario-based process ensures that the final solution 
is both computationally efficient and operationally feasible, which is 
critical for the real-world application of transforming Belgium’s natural 
gas network into a hydrogen network.

Based on the system model shown in Fig.  1, the solution results 
of the designed problem are illustrated in Figs.  3 to 7. In Fig.  3, the 
discharge pressure across the various nodes in the network is compared 
for three different approaches: deterministic, stochastic, and dynamic. 
The results show that the proposed dynamic approach exhibits superior 
performance in terms of discharge pressure optimization. The key 
advantage of the dynamic approach lies in its ability to respond to 
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Fig. 2. Process flow of the proposed optimization mechanism.

Fig. 3. A dynamic gas discharge pressure at the different nodes of Table  2.

varying demands by dynamically adjusting the number of compressors, 
allowing for more efficient resource allocation. This is in stark contrast 
to the deterministic and stochastic methods, which operate with fixed 
compressor settings and fail to account for real-time demand fluctu-
ations. As a result, the deterministic and stochastic approaches show 
higher variability in discharge pressures across the nodes, whereas the 
dynamic approach maintains a more stable and optimized pressure 
distribution. This performance is achieved through the use of the CPLEX 
solver, which directly solves the Mixed-Integer Nonlinear Programming 
(MINLP) problem without requiring linearization, thereby allowing for 
more accurate and responsive compressor scheduling.

In Fig.  4, the comparison of gas flow, discharge, suction, and 
pressure drop at various nodes further highlights the advantages of 
the dynamic approach. Specifically, the dynamic scheduling algorithm 
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results in a more balanced and optimized flow across the network. 
This is crucial in real-world applications where demand can change 
rapidly, and the system must adapt to maintain optimal flow and pres-
sure conditions. The dynamic approach integrates real-time gas flow 
(MMCFD) considerations into the optimization, which ensures that each 
node operates under optimal conditions, thereby improving overall 
system efficiency. In contrast, both the deterministic and stochastic 
methods show greater pressure drops and less optimal flow profiles, 
indicating suboptimal resource allocation. The stochastic and dynamic 
algorithms (Fig.  4b,c) give a relatively balanced profile across nodes 
(8–11) due to the selection of diameter and length of the pipes (Table 
3). Similarly, Fig.  4a gives a low flow rate across nodes (4–7), which 
is due to the selection of a constant diameter (18 inches) of the pipe. 
Moreover, the selection of length across node (4) seems non-optimal, 
which is unexpectedly increased in the deterministic approach, causing 
a pressure drop. The inclusion of gas flow in the objective function, 
unlike similar work where this was not accounted for, allows for a more 
comprehensive optimization of the network’s operations. By addressing 
both the variability in discharge pressure (Fig.  3) and the overall system 
flow and pressure profiles (Fig.  4), the proposed approach demonstrates 
its ability to outperform traditional methods in terms of efficiency, 
resource allocation, and response to demand fluctuations. These en-
hancements make the dynamic approach particularly well-suited for 
real-time operational management in complex gas networks.

Fig.  5 shows the comparison of flow rates across each node. It 
reflects that the flow dynamically changes across each node depending 
on the supply–demand creation, lower and upper limits, and scheduling 
uncertainties. However, the overall operation is completed to fulfil 
the required objective. The figure also shows that the deterministic 
algorithm exhibits higher flow rates at nodes 8–10, while the stochastic 
and dynamic algorithms display more consistent profiles due to the 
dynamic behaviour of the control variables during the implementation 
and decision process.

Fig.  6 presents the pressure drop profiles at each compressor. The 
loss function is included in the objective function, which depends on 
the compressor types and specifications. The maximum pressure drop 
is observed at nodes 3, 5, and 7, where the deterministic technique 
outperforms the other techniques. However, the overall performance 
of the dynamic technique is better, primarily due to the mismatch 
between the dynamic pressure on the supply and demand sides. The 
pressure drop at the remaining nodes is reasonably lower, which can 
be attributed to the selection of valves, junctions, and compressors.

Fig.  7 displays the profiles of the suction pressure across each node 
along with the minimum and maximum limits. Initially, the suction 
pressure in the dynamic technique shows a continuously increasing 
trend, which leads to decreased costs compared to the other techniques. 
It is clear from Fig.  8 that the dynamic algorithm significantly reduces 
operating costs (59.98%), primarily due to the optimal selection of 
compressor stations (four stations in total). In contrast, the determin-
istic and stochastic algorithms show comparatively higher operating 
costs, as six to seven compressors are required in these approaches. 
Consequently, the compressor capital cost is also lower in the dynamic 
algorithm, highlighting its cost efficiency. However, it is important to 
note that the pipe capital cost in the dynamic algorithm is marginally 
higher (0.084%) than in the stochastic algorithm and (3.49%) more 
than in the deterministic approach. This increase stems from the se-
lection of a slightly longer pipeline across node 3 (143 km). Despite 
this, the overall reduction in operating and compressor costs validates 
the superior performance of the dynamic algorithm in terms of cost 
optimization.

Table  3 shows the relationship between the diameter and length of 
the H2 pipeline network across the given number of nodes. These results 
demonstrate the variation in length and diameter selection during the 
implementation process. The dynamic flow has impacted the optimal 
selection of the diameter. This variation is due to changes in H2 flow 
pressure based on the demand profiles. Similarly, Table  4 presents 
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Fig. 4. A comparison of gas flow, discharge, suction, and drop in pressure at the different nodes of Table  2.
Fig. 5. Gas flow at the different nodes of Table  2.

Fig. 6. Gas pressure drop at the different nodes of Table  2.

the compressor ratios and workloads, comparing scenarios with fixed 
pressure using the Eq. (25) (ratio-1 and work-1) and dynamic demand 
(ratio-2 and work-2). Table  5 extends this comparison by including 
a probabilistic approach with storage units, showing three different 
settings: fixed pressure without storage (ratio-1, work-1), integration of 
storage units (ratio-2, work-2), and both storage unit and dynamic flow 
rate (ratio-3, work-3). It is also worth mentioning that Table  4 shows 
results for only four compressors, whereas Table  5 includes results 
10 
Fig. 7. Gas pressure at the different nodes with lower and upper limits.

Fig. 8. Total capital cost of the H2 transmission network to meet the demand.

for six and seven compressors. This increased number of compressors 
helps to reduce the extra pressure on individual compressors through 
optimal pressure allocation across all compressors. Otherwise, selecting 
a smaller number of compressors may lead to excessive pressure drops.

A performance comparison of the three methodologies — stochastic, 
dynamic, and deterministic — is shown in Table  6. This analysis 
evaluates the impact of each method on the objective function, iden-
tifying the optimal values achieved by each approach. The dynamic 
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Table 3
Relationship between the diameter and length of the gas pipeline network.
 Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13  
 Deterministic Diameter 34.20 31.91 31.91 18.0 18.0 18.0 18.0 18.0 18.0 18.0 33.71 18.0 18.0  
 Length 3.0 49.21 96.78 3.0 40.400 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0  
 Probabilistic Diameter 33.71 31.67 31.67 18.0 18.0 18.0 18.0 18.0 18.0 18.0 33.71 18.0 18.0  
 Length 3.0 53.04 92.95 3.0 40.400 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0  
 Deterministic with Storage Diameter 34.20 31.61 31.61 18.0 18.0 18.0 18.0 16.76 16.76 16.76 33.71 16.76 16.76 
 Length 3.0 38.97 107.02 3.0 16.53 13.70 16.16 3.0 3.0 3.0 3.0 3.0 3.0  
 Probabilistic with Storage Diameter 33.71 31.39 31.39 18.0 18.0 18.0 18.0 16.82 16.82 16.82 33.71 16.82 16.82 
 Length 3.0 42.11 103.88 3.0 7.97 8.57 29.85 3.0 3.0 3.0 3.0 3.0 3.0  
 Dynamic Diameter 36.00 36.00 32.25 18.0 18.0 18.0 18.0 17.47 17.47 17.47 33.71 17.47 17.47 
 Length 3.00 3.00 143.00 3.0 7.92 8.57 29.85 3.0 3.0 3.0 3.0 3.0 3.0  
Table 4
Optimal selection of the compressors and comparison of work done based on ratio 
(Eq. (25)), Dynamic approach.
 Sr. No Compressor Ratio-1 Work-1 Ratio-2 Work-2  
 1 𝐶1 1.469 9288.83 1.475 9384.46  
 2 𝐶2 1.373 7566.75 1.369 7488.469 
 3 𝐶3 1.131 2866.32 1.150 3274.98  
 4 𝐶5 1.253 1799.70 1.253 1799.70  

Table 5
Optimal selection of the compressors and comparison of work done based on ratio 
(Eq. (25)), Probabilistic and deterministic approaches.
 Sr. No Compressor Ratio-1 Work-1 Ratio-2 Work-2 Ratio-3 Work-3  
 1 𝐶1 1.469 9288.83 1.475 9384.46 2.00 17214.88 
 2 𝐶2 1.373 7566.75 1.369 7488.469 1.85 15160.67 
 3 𝐶3 1.104 2312.02 1.121 2654.71 1.70 12949.58 
 5 𝐶5 1.500 4679.86 1.514 4818.90 1.66 5981.40  
 6 𝐶6 1.248 2502.46 1.101 1075.90 1.101 1075.90  
 7 𝐶7 – – 1.108 1148.27 1.108 1148.27  

method achieved the highest objective value, surpassing the stochastic 
and deterministic approaches by 6.94% and 5.34%, respectively. The 
stochastic technique yielded the best average solution, surpassing the 
dynamic and deterministic methods by 8.58% and 13.70%. Since, the 
simulations were conducted across 100 scenarios for 100 iterations 
using Monte Carlo simulation, considering variations in pipe & op-
erating costs as well as suction & discharge pressures with ±18.75% 
deviation. Notably, the total number of iterations required to complete 
the simulations was consistent across all methods, though execution 
time and iterations increased with the total number of scenarios. In 
addition, the optimality criteria are also validated via a convergence 
test. Regarding cost reduction, the proposed dynamic approach excels 
in cost reduction due to its adaptability to fluctuating demand and op-
erational conditions. It optimizes compressor selection and scheduling, 
integrates storage facilities for efficient gas management, and effec-
tively addresses uncertainties in cost, suction, and discharge pressures. 
This holistic strategy enables global optimization, leading to lower 
operating costs and enhanced system efficiency, ultimately resulting in 
significant overall cost savings.

7. Conclusions and future work

In this study, we introduced a novel MINLP approach with CPLEX 
employing branch-and-cut and branch-and-bound algorithms to address 
the complex hydrogen gas network problem in the Belgian network. 
11 
Utilizing a graph theory-based framework, our model optimizes the pri-
mal MINLP problem with a strong focus on cost reduction. We reduce 
computational delays by leveraging discrete and continuous optimizers 
such as DICOPT with CPLEX or CONOPT solvers through integer vari-
able fixing. Unlike conventional methods that rely heavily on branch-
and-bound for NLP, our strategy enables dynamic hydrogen demand 
management, incorporating storage facilities without excessive depen-
dence on historical datasets and control variables. The proposed model 
demonstrates adaptability by incorporating deterministic, stochastic, 
and dynamic techniques, each suitable for different scenarios. The 
deterministic approach offers simplicity and computational efficiency 
but lacks flexibility when dealing with uncertainties in demand. The 
stochastic method accounts for uncertainty but is computationally more 
expensive. In contrast, the dynamic technique, which is the core of 
our work, adapts in real-time to fluctuating demand, offering supe-
rior performance in terms of resource allocation and computational 
efficiency. Our results demonstrate that the dynamic approach signif-
icantly reduces the number of iterations (56 iterations) compared to 
deterministic (92 iterations) and stochastic (77 iterations) methods, 
achieving a 25.02% cost reduction while maintaining robustness.

The advantages of the dynamic approach, including real-time adapt-
ability and superior computational performance, make it particularly 
well-suited for large-scale, complex hydrogen network transmission 
planning. However, deterministic and stochastic methods remain valu-
able in specific application scenarios, such as when system uncertainties 
are minimal or known in advance. Our approach has been validated 
through real-world simulations, effectively addressing the challenges 
associated with hydrogen network optimization and planning in large-
scale systems. Building on these findings, our future work aims to 
expand the hydrogen network to include electricity or water distribu-
tion networks, adopting a holistic energy system approach. This aims 
to advance sustainable and efficient hydrogen networks, transforming 
clean energy technology and its practical application. To achieve this, 
several key areas will be addressed:

• Model Complexity: addressing the high complexity and computa-
tional demands of the current model, which may limit scalability 
and applicability to other networks.

• Integration Challenges: exploring the integration of hydrogen 
networks with electricity and water systems, and managing their 
interdependencies and impact on performance.

• Real-Time Data Integration: combining real-time and historical 
data for improved prediction and long-term forecasting, while 
addressing data synchronization and reliability issues.

• Demand-Side Management: enhancing demand forecasting to op-
timize network planning and utilization, considering factors like 
consumer behaviour, demand variation, environmental
influences, technological advancements, and policy changes.
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Table 6
Performance comparison of different algorithms.
 Algorithm Exe. time (s) Best sol. Avg. sol. Std. dev. Sol. Iter. 
 Deterministic 8.937 6796965.745 7019837.219 121375.297 Optimal 112 
 Stochastic 8.406 7005929.375 6452271.910 306275.029 Optimal 104 
 Dynamic 7.860 6452271.910 7005929.375 307817.986 Optimal 104 
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