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ABSTRACT

This article presents an innovative approach to address the optimization and planning of hydrogen network
transmission, focusing on minimizing computational and operational costs, including capital, operational,
and maintenance expenses. The mathematical models developed for gas flow rate, pipelines, junctions,
and storage form the basis for the optimization problem, which aims to reduce costs while satisfying
equality, inequality, and binary constraints. To achieve this, we implement a dynamic algorithm incorporating
100 scenarios to account for uncertainty. Unlike conventional successive linear programming methods, our
approach solves successive piecewise problems and allows comparisons with other techniques, including
stochastic and deterministic methods. Our method significantly reduces computational time (56 iterations)
compared to deterministic (92 iterations) and stochastic (77 iterations) methods. The non-convex nature of
the model necessitates careful selection of starting points to avoid local optimal solutions, which is addressed
by transforming the primal problem into a linear program by fixing the integer variable. The LP problem is
then efficiently solved using the Complex Linear Programming Expert (CPLEX) solver, enhanced by Monte
Carlo simulations for 100 scenarios, achieving a 39.13% reduction in computational time. In addition to
computational efficiency, this approach leads to operational cost savings of 25.02% by optimizing the selection
of compressors (42.8571% decreased) and storage facilities. The model’s practicality is validated through real-
world simulations on the Belgian gas network, demonstrating its potential in solving large-scale hydrogen
network transmission planning and optimization challenges.

1. Introduction

In recent years, the concept of sustainable and fully integrated
networks has gained significant interest from both policymakers and

Hydrogen, increasingly recognized as an environmentally friendly
fuel due to its potential to reduce CO, emissions [1], is gaining atten-
tion across multiple sectors including petroleum, chemical industries,
fuel-cell vehicles, and energy production [2]. Traditional hydrogen
production methods like fossil fuel-based reforming and coal gasifica-
tion [3] are being complemented by innovative alternatives such as
synthesis from organic waste and photoelectric water splitting [4-6],
driven by a shift towards sustainable energy solutions. Currently, about
95 million tons of hydrogen are produced annually, mostly from natural
gas [7,8], supporting sectors like refining and ammonia production.
Hydrogen’s role in the transportation and energy sectors is expand-
ing [9], with technological advancements enhancing its production
and applications [10-13]. Despite challenges, ongoing research into
hydrogen’s sustainable production and applications in areas like green
hydrogen generation, refining, and steel production [9] offers promis-
ing prospects for reducing dependency on fossil fuels and minimizing
environmental impacts [11,13].

* Corresponding author.
E-mail address: Muhammad.rasheed@uah.es (M.B. Rasheed).

https://doi.org/10.1016/j.est.2025.117840

researchers [14]. This shift is driven by escalating costs, the need
for sustainability, and advances in digital technology, prompting the
evolution of isolated systems into cohesive, networked structures. These
integrated systems deliver diverse services across various sectors, in-
cluding transportation [15-17], electricity, water [18-20], and natural
gas. Historically, these networks operated independently within their
respective domains. Yet, they have grown increasingly interconnected
due to shared goals of sustainability and cost-effectiveness. For in-
stance, New England’s electric power grid heavily depends on natural
gas not only for electricity generation but also for heating residential
buildings.

As a result, the complex and varied interdependencies among these
network systems underscore the need for precise and sustainable net-
work operations. Such operations would facilitate optimal management
through a holistic approach, effectively balancing trade-offs [14,21].
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Hab

index of junctions

index of compressor stations
index of H, supply sources
index of H, storage units
index of time horizon

variable discharge and suction pressure
Hazen-Williams and Darcy-Weisbach com-
ponent

loss at each node (n)

compression loss at compressor (c)

H, flow probability

represents total no. of branches

variable operating cost factor

are constants

total flow

nodal head of a pipe

required pressure at the nodal head of a
pipe

pressure at nodal head of a pipe
resistance of a pipe

pipeline capital cost

capital cost

operating cost

denotes length of a H, pipe in (km)

H, gas storage unit

denotes the internal diameter of a H, pipe
in (mm)

storage level increasing over t

max. the volume of a gas

max. volume at storage unit

shutdown state of the compressor unit
storage state at time t

storage level is decreasing over t

min. pressure at the nodal head of a pipe
min. volume at storage unit

startup state of the compressor unit
on/off state of the compressor unit
nodes carrying non-zero flow

denotes the friction factor

H, flow from node a to b

friction of a pipe

H, demand over ¢

pressure head at the outlet of the storage
unit

total no. of H, gas pipes

denotes gas pressure

denotes atmospheric pressure in psia
discharge pressure (psi)

suction pressure (psi)

denotes pressure drop in the pipe
denotes volumetric flow rate in m3/h
flow of H, gas supply sources

in-flow of a H, gas

Gour out-flow of a H, gas

qy flow from storage facility

S, denotes relative density of gas
S suction temperature

S cross-section area of a pipe

T denotes temperature in °K

vy volume of a H, as in MMCFD
w rate of work done

z compressibility factor

Sev volume at storage unit

Consequently, there is a pressing need for robust, dynamic, and au-
tonomous modelling strategies. These strategies must accurately rep-
resent the diverse interdependencies of these systems while ensuring
a flexible and scalable implementation across different application
domains [22]. This research makes significant contributions to the
field of hydrogen gas transmission network optimization by addressing
the complexities of interdependencies, cost factors, and operational
constraints.

This study extends traditional gas transmission models [23] to the
hydrogen sector by developing a comprehensive and adaptive opti-
mization framework that incorporates dynamic gas flow rates, pipeline
design, storage capacities, and compressor costs. The primary contribu-
tions lie in employing a hybrid Mixed Integer Non-Linear Programming
(MINLP) approach, integrating uncertainty through 100 scenarios in
the Monte Carlo method, which dynamically adapts to fluctuating
conditions. By transforming the non-convex optimization problem into
a more tractable Linear Programming (LP) formulation via fixed integer
variables, the model achieves a 39.13% reduction in computational
time compared to conventional methods. Additionally, the novel algo-
rithm yields a 25.02% reduction in operational costs through optimal
compressor and storage selection. Rigorous real-world validation us-
ing Belgium’s natural gas network highlights the model’s practical
applicability and robustness, marking a significant advancement in
hydrogen network optimization by addressing both computational effi-
ciency and cost minimization in dynamic and uncertain environments.
The remaining paper is organized as follows.

Section 2 describes the related works. The system model and prelim-
inaries are discussed in Section 3. The problem formulation is discussed
in Section 4. Section 5 describes the solution methodology, algorithms,
their implementation, and possible drawbacks. Simulation results are
discussed in Section 6. Finally, the conclusion and future work are
summarized in Section 7.

2. Related work

In the literature, optimization algorithms for hydrogen network
operations often rely on formal graph-theoretic approaches and are
tailored to specific applications. For example, a minimum-cost flow
model was developed by Rabiee et al. [24] to optimize hydrogen trans-
mission networks under uncertainty, using mixed-integer programming
to minimize operational costs, but this approach does not fully account
for network heterogeneity. The challenge arises because different types
of system functions (such as pipeline capacities, gas flow variations, and
storage requirements) introduce significant heterogeneity, which com-
plicates optimization efforts. Traditional graph-based models, which
consist of vertices (nodes) and edges (links), typically describe the
topology of a network but fail to capture the dynamic processes or the
varying nature of hydrogen flow under different scenarios.

Efforts to address these complexities have led to the development of
multi-layer network frameworks. For instance, Liu et al. [25] proposed
a tensor-based framework for modelling multi-layer energy systems,
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including hydrogen networks, allowing for the integration of various
network layers (such as pipelines, junctions, and storage facilities)
to capture interdependencies and dynamic processes. However, while
such models offer a more comprehensive understanding of complex
systems, they often lack empirical validation in real-world scenarios,
which limits their practical application. Other researchers, such as Hos-
seini et al. [26], have sought to expand upon traditional graph theory
to better incorporate heterogeneity in energy networks, especially for
hydrogen transportation systems. Their work provides a conceptual
framework for modelling and analysing such systems, but it mainly
focuses on theoretical formulations without substantial empirical data
or simulations to validate the proposed models. Nevertheless, Kivela
et al. have outlined the modelling limitations that can be addressed
with multilayer networks [27]. Consequently, solutions based on opti-
mization algorithms may encounter these inherent limitations. Kiveld
et al. have also introduced a convex energy-like function for modelling
gas transmission systems involving pipelines and compressors [28],
tackling some of these challenges.

It enables precise tracking of gas flow solutions through simple
convex optimization. The approach also establishes a reliable gas flow
model under uncertainties, validated through simulations for different
gas transmission systems. However, this work has limited applicabil-
ity to hydrogen network transmission planning, as it focuses on gas
transmission systems. It also lacks a comprehensive exploration of un-
certainties in the gas flow model and their impact on system feasibility.
Additionally, the absence of real-world validation and case studies
specific to hydrogen network transmission systems hinders its practi-
cality. Qikun Chen et al. [29] proposed a work utilizing linepack as a
gas storage buffer, these stations can operate compressors flexibly to
minimize operational costs under varying electricity prices. The study
demonstrates significant reductions in operational costs and emissions
over 20% and 50%, respectively, and assesses the economic feasibility
of investing in electric-driven compressors, sensitive to future carbon
prices. However, the scope of this work is limited to Great Britain’s
gas network, which may raise questions about its generalizability to
other networks. Furthermore, the focus on only the economic feasibility
overlooks explicit consideration of environmental and safety aspects.

Moreover, the practical challenges and constraints related to real-
world implementation in hydrogen gas transmission systems are not
thoroughly addressed, necessitating further investigation for practical
validation. Khalil et al. [30] present an optimization-based method for
designing a hydrogen pipeline network, utilizing the existing natural
gas network as a basis and allowing pipeline conversion. The approach
achieves a 5.87% cost reduction compared to the initial solution and
aligns with the potential hydrogen network, Wasserstoffnetz 2030,
validating its effectiveness. However, the potential limitation of this
work is that the optimization model might be limited by its reliance on
certain assumptions and simplifications, which may not fully capture
the complexity and variability of real-world scenarios. Further studies
and considerations might be needed to address other factors, such as
system reliability, and potential regulatory constraints, to ensure the
feasibility and effectiveness of the hydrogen pipeline network design.

Sai Krishna et al. [31] present a nonlinear optimal control problem
for intraday gas pipeline network operation, including storage reser-
voirs. It models gas flow dynamics in pipes, compressors, reservoirs,
and wells using spatial discretization and coupled partial differen-
tial and nonlinear differential-algebraic equations. The objective is
to maximize economic profit and network efficiency while respecting
operating limitations. The proposed methodology is validated through
computational experiments on pipeline test networks, demonstrating
its effectiveness. However, the proposed work has limitations related
to the representation of storage reservoir dynamics and the scalability
of the solution method for larger networks. Adarsh et al. [32] used a
multi-objective ant colony optimization strategy to minimize operating
costs in a natural gas pipeline grid. It considers competing objectives
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of reducing fuel usage in compressors and increasing throughput at dis-
tribution centres. The methodology provides optimal solutions for each
fuel consumption level on compressors and generates a Pareto front for
gas distribution points, aiding pipeline managers in cost-effective op-
eration. However, this work focuses solely on optimizing the operating
costs of the natural gas pipeline grid using the ant colony optimization
strategy. Further research would be needed to explore the broader
implications and potential trade-offs involved in optimizing natural gas
pipeline grids. Chongyuan Shui et al. [33] present a work that applies
optimal transport theory to optimize natural gas pipeline operations,
considering line-pack effects. The problem is divided into two stages for
solvability with existing methods. The proposed model demonstrates
effectiveness, achieving a 14.5% energy saving in the studied pipeline
segment. However, the main limitation of this work is its focus on
optimizing the network while overlooking certain complexities and
comprehensive modelling features. Additionally, its applicability to
large-scale networks and integration with other energy systems may
need further investigation.

Farid [34] identified that a graph theory-based modelling approach
has also been used in a generalized multi-commodity network flow
optimization. Although this approach has implemented a notion of
function heterogeneity, however, it does not integrate a specific state
and description of the operands and storage units. Finally, the devel-
oped strategies used to optimize the discipline and application-specific
integrated solutions lack general ability. Furthermore, this work lacks
empirical validation or practical case studies to demonstrate the effec-
tiveness and applicability of the proposed composite reconfigurability
measures in real-world manufacturing systems. To further overcome
these limitations, a hetero-functional graph theory (HFGT) was intro-
duced to study the reconfigurability of network systems [17,35,36] and
has already been applied to solve several sizeable, flexible engineering
systems. These include; electric power grids, water distribution systems,
transportation networks, healthcare management systems, and other in-
terdependent infrastructures. Schoonenberg and Fard [22] have further
developed an HFGT to include a tensor-based formulation to introduce
system flexibility. Generally, an HFGT has introduced many modelling
constructs not found in the traditional graph theory approach [37].

The limitations in existing optimization strategies for hydrogen
flow networks stem from their focus on gas networks, which lack
applicability to hydrogen systems due to differences in storage and flow
dynamics [27]. Many models, such as those by Khalil et al. [30] and
Qikun Chen et al. [29], rely on simplifications like using natural gas in-
frastructure, limiting their generalizability and robustness in real-world
scenarios. Additionally, these studies inadequately address uncertainty
in flow dynamics, environmental impacts, and safety concerns [27,29],
which are critical for hydrogen networks. Most approaches also lack
real-world validation, particularly in large-scale networks [31,32], and
face challenges with scalability [33], highlighting the need for more
flexible and validated models that can handle the unique complexities
of hydrogen transmission.

3. System model

This section explains the preliminaries of the study, the system
model and its layout, the mathematical models of H, gas flow rate,
the storage model, the objective function, and the constraints [23,30,
33,38].

3.1. Test case selection

For implementation, Belgium’s gas network (Fig. 1) is selected for
this study due to its strategic importance, publicly available dataset and
comprehensive infrastructure, which provides a well-balanced test case
for hydrogen transmission optimization. Because, Belgium’s gas net-
work is characterized by a combination of high-and-low-gas pipelines,
compressor stations and their locations, and storage units, making it
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Fig. 1. Schematic diagram of the low and high-pressure Belgium Gas Network,
highlighting the 13 nodes (Table 2) and the corresponding flow directions.

an ideal representation of regional & transnational gas flows. This
network also serves as a transit hub for natural gas between multiple
European countries, such as France, Netherlands, Norway, Luxembourg
and Germany. Eventually, this makes the Belgian network a complex
yet practical case for hydrogen conversion, ensuring that the results can
be generalized and adapted to other networks within Europe. Addition-
ally, the geographic location of Belgium has established connections to
other gas sources such as Dutch, Algerian, and Norwegian gas, which
make it particularly suitable for investigating the dynamic interplay
of hydrogen transmission, storage, and distribution in a real-world,
heterogeneous network setting.

3.2. Preliminaries

This work focuses on the Belgium gas distribution network depicted
in Fig. 1, highlighting key design and operating factors such as the
total number of nodes, storage unit supply locations, and destination
nodes. The network is engineered to transport a predetermined quantity
of H, gas from single or multiple points to others, with well-defined
initial and final states (i.e., supply pressure, composition, temperature).
It consists of several key nodes categorized by their roles. The high
gas nodes include Gravenvoeren, Liege, Namur, Sinsin, Arlon, Mons,
Blarengies, and Anderlues. The low gas nodes are Zeebrugge, Poppel,
Hasselt, and Brugge. Additionally, there are gas storage units near
Antwerp and Blarengies. The network also features connected cities
such as Antwerp and Luxembourg, with flow directions indicated for
exports to France and other countries.

We have considered this Belgium gas network as a model for our
hydrogen gas network (Fig. 1) that consists of supply sources (r € fR),
set of compressor units (n € N'), storage units (s € S), junctions
(j € J) and flow networks. These networks are composed of a
storage facility, arcs & nodes (a,b) of pipeline network, compressor
units, and distribution sites. The optimal design of a transmission
and distribution network involves capital expenditures, operational &
maintenance costs, depreciation costs, and return on investment (ROI),
respectively. Before designing these networks, various parameters must
be considered to ensure optimal operation:

* Required pressure: to ensure the required gas pressure at distribu-
tion locations, determining the optimal number and location of
compressor units becomes crucial within a given time horizon.
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» Network design: when the initial network design allows for po-
tential expansion based on future requirements, obtaining the
optimal solution for the extended design is essential to achieve
cost-effective expansion and operation.

Network parameters: the design of single or interconnected net-
works should include optimal parameters such as diameter,
length, number of nodes, and arcs to manage gas pressure at the
supply side effectively.

Initial conditions: during implementation, certain parameters are
fixed, such as the initial discharge pressure and flow rate at the
Gravenvoeren node (Fig. 1) is fixed at 500 psi and 600 MMCFD,
which vary over time with changes in demand. Similarly, pipeline
length and diameter in all branches are fixed (Table 3), while the
flow across nodes is adjusted to meet the demand.

Flow condition: The steady-state equations presented in Section 3.3
are designed to model gas flow while focusing on optimizing the
gas network’s cost parameters, including capital cost, operating
cost, pipe capital cost, compressor annual cost, and the selec-
tion of optimal compressors, length & diameter of pipe to meet
demand requirements (see Table 1). This model also integrates
fixed storage (10% of total demand) considerations within the
operating time interval (unit time), which allows for a simplified
representation of storage behaviour in steady-state conditions.
Boundary conditions: the optimization program incorporates these
conditions and a set of constraints as detailed in (Sections 3.3, 3.4,
3.7 and 3.8) to obtain globally optimal results, achieving minimal
cost and computational complexity.

Based on these parameters, a cost minimization objective function is
formulated to determine (i) the total number of compressor units,
(ii) the length of supply and distribution pipeline segments, (iii) the
diameter and length of pipelines, and (iv) the supply and discharge
pressure at each compressor unit.

The primary objective of this study is to minimize costs over one
year, accounting for maintenance, capital, and operational costs. The
design challenge does not constrain the number of compressor units
or locations, lengths of pipeline segments, diameters of pipes con-
necting different branches, or locations of branching points. Thus,
the objective function is modelled as a mixed integer nonlinear pro-
gramming (MINLP) problem. Before detailing the proposed network
layout, it is crucial to distinguish between two optimization problem
types. First, if the total cost of the H, gas compressors is a linear
function of horsepower, the problem can be addressed using nonlinear
programming (NLP). Alternatively, suppose the total cost includes a
fixed capital component for zero horsepower. In that case, the problem
becomes more complex and is better handled using branch-and-cut
or branch-and-bound algorithms. While these approaches can provide
optimal results, they might also increase the system’s complexity if
the objective function and constraints are not precisely defined. The
problem formulation encompasses several aspects: (i) the H, gas flow
rate, (ii) the pipeline configuration design, (iii) the control and design
variables, (iv) the cost minimization objective function, and (v) the
equality, inequality, and binary constraints.

3.3. Gas flow rate
Generally, the common way to express a gas flow rate (g,) using

the Weymouth Equation in terms of cubic meter per hour (m?/h) at
standard conditions for isothermal flow is written as [39,40] in Eq. (1):

q, =1.361x 107 @

where p denotes gas pressure (psi), T denotes the temperature in (°K),
S, denotes the relative density of the gas in (0.005229 1b/ft3), [28],
L,, is the length of a pipe in (km), 0 denotes the internal diameter

m
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of a pipe in (mm), and f is the friction factor which depends on the
material. However, other equations like Weymouth and Panhandle can
also be used to express the gas flow in long pipelines. It is also assumed
that the hydrogen flow rate is unidirectional in each pipe as denoted
by Eq. (2):

gy >0: Vn.1€T, @

For high-pressure and long pipes, the Weymouth equation is most
widely used due to efficiency and is written as follows in Eq. (3):

Py - P
F LS,

where p,&p, denote discharge and suction pressure, while friction
factorinEq. (3)is f = ?]'?%. Furthermore, this friction factor is the same
as obtained from the Moody diagram [41] for the 20-inch pipeline.
However, the friction factor is larger for smaller than 20-inch diameter
pipe and vice versa. To calculate the pressure drop ({ in %) over ¢
in pipe n,, the following expression can be used that is presented in

Eq. (4),[23]:

] 288 vier @)

gl = (2.61 x 107%) x ¢>667

T

p—p
o= 4L—x100),vtreT €))
ng 1 '3

pd_p

a

where p, = 14.73 psia denotes the atmospheric pressure.
3.4. Pipeline design

Fig. 1 shows the considered network layout & configuration and
notations employed for the compressors in terms of nodes, and the
H, gas pipeline segments. An interconnected node can either represent
each compressor unit and an arc represents each pipeline. Let n € N
represent the total number of possible compressor stations in each
branch # = 3. Let the set of possible junctions denoted by |j| = J, while
the fixed or dynamic gas demand g,, over time interval ¢ is applied
over the junction(s) (j € J). It is also assumed that the value of the gas
demand g,, is known in advance for the junctions j € J and t € 7.
Let a, b denote the gas pipes/nodes that carry the non-negative flow g,
from node a to node 5. When the gas distribution network is designed,
it is equally important to ensure gas flow continuity (i.e., gas supply
- gas demand = 0); since the pressure increases at the compressor
unit and decreases along the junctions. Therefore, the consideration
of the gas pressure drop/loss factor must also be ensured across all
the junctions in the network. In addition, the H, transmission and
distribution network is assumed to be horizontal. For each pipeline
configuration, every node and arc is labelled, separately. For example,
total number of compressors n = Z,T:] N, the initial suction pressure
Py, at t — 1, the discharge pressure p, ,, and the length of the pipeline
segment £ and respective diameter d(n + 1). The gas demand flow
balance at junction j € J is represented by the Eq. (5), while the inflow
and outflow must always be equal to meet the demand capacity over
the given time.

:
G=2 X dpt X G VIET, ®)

=1 a€giy(b) C€dou(B)

where, a € g;,(b)&c € q,,,(b) denote the nodes supplying and carrying
gas flow from junction b (i.e., @ — b and b — ¢). The steady-state gas
flow equation over time (¢ € 7) can be written as Eq. (6):

T

N R S N
Yalod,+ Dal-[Xa+Xd,+ X8, |t=0veT, ®)
n=1 r=1 s=1 n=1

t=1

where § denotes the probability to analyse uncertainty in the networks
optimization problem, o/ denotes loss due to internal friction, ﬁép
represents the compression loss over time ¢ which is due to the working
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of a compressor, and 4’ denotes the flow over r at supply resources, ¢!,
denotes the flow at storage sources over 7, respectively.

E' @l —wl) - & =0,Yn1, ()
Eq. (7) denotes the switching states of the hydrogen compressor unit.
T
Fab=22{q;b+g:j},\7’t€7,ng, (8
1=1 Vi,

Eq. (8) shows the gas flow balance (F,,), n, denotes the number of
pipes, ¢,, denotes the gas flow from node a to b and g/, denotes the
H, demand over a given time interval. H, and R,, denote the nodal
head and the coefficient of resistance in Eq. (9), while the f defines
the exponent of the flow. The H, gas flow balance is denoted by

Eq. (9), [42-471].
H, - H, = R,,q,lq,|"". 9

Eq. (9) denotes the pressure head loss across all pipelines. It is further
assumed the system operator has control over the minimum pressure Hj
to fulfil the flow demand at all junctions j. Let H} denote the current
pressure head to satisfy the required head level Hj at time ¢ (Eq. (10)).

H] > H_; (10)
where the gas flow among all the nodes is denoted by Eq. (11).
H,-H
b = -, an
Hj,,ZE’VJGJa"gs&IET 12)

Eq. (12) denotes the minimum allowable flow over r must satisfy the
pressure head H;. It is defined as H = {H;|j| € J} and G = {G,,|j| €
T,t € T}. Here, the optimal selection of pressure head loss depends
on the optimal selection of 11 in Eq. (9). The Hazen-Williams and
Darcy-Weisbach with 1=1.852 and n=1.852 relationships are being
widely adopted for pressure head calculation [46,47]. Both the Hazen—
Williams and Darcy-Weisbach relationships can be alternatively used to
calculate pressure head loss. However, the former involves less complex
calculations as compared to the latter one. Similarly, the head loss ¢/,
of pipes (ab) carrying non-zero flow at time instant 7 can be computed
using Darcy Weisbach Eq. (13):

£ =Fux @ ) VieT 13)

where, F,, is a constant having non-negative value which is equal to

% > 0. Where /,,&d,,, denote the length and diameter of the pipe
abgp8

(in meter), g is the acceleration of gravity (in m/s?), and S, represents
the cross-section area of the pipes. At each time ¢t € 7, pressure head
H must satisfy the constraint of Eq. (14):

0< & <H,; e))
where, H; and H_J denote the minimum and maximum head at j over
time interval ¢. Thus for each junction J, the values of H can be defined
as; H=H;|j € J|.

Furthermore, the H, supply tanks and/or reservoirs can be modelled
by considering the volume of gas at a certain time. Let the volume H, in
the supply tanks be denoted by U;. Then the supply balance constraint
at time ¢ is written as Eq. (15):

v = U;’l +q, (15)

0<u <UL 16)

Eq. (16) establishes the lower limits on the volume of H,, and the
variable v/ represents the maximum allowable volume of H, at time
t. Algorithm 1 explicitly details the gas flow management process,
dynamically adjusting the flow based on real-time demand (p!). This
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algorithm provides a responsive mechanism to balance hydrogen pro-
duction and storage with consumer and industrial needs, thereby opti-
mizing operational efficiency and reliability. Integrating these elements
within our model highlights the interdependencies between supply lim-
its and demand fulfilment, underscoring the complexity of efficiently
managing hydrogen distribution networks.

Algorithm 1: Hydrogen Flow Procedure based on Demand Capac-
ity.
Input: t,n, g,
Output: F,
if g} < g}, + S, then
a,=4d,- S)tz,u & S}’;%U has y' state else if g/, > ¢, then
a,=d,+ Sé,u & S;,U has y' state

H 1 t
else [1f qj. xS ngv then
| a4, =45
end
end

end

3.5. Pump model

Hydrogen pumps consume energy to elevate the nonzero (H; —H; >
0) head along the pipes n, over time 7, given by Eq. (17),

E_ESA[,/(‘I,{J)z+B[j(qz,j)+c,-tj a7

where, A;;, B;; and C;; are positive constants of a quadratic cost
function that supply electric power to the pumps on each pipe over
time .

3.6. Pressure valves

The hydraulic head pressure is changed due to minimum pressure
requirements H/ along pipes (n,) over given time ¢ as given below:

H,-H =H] VieT 18)

3.7. Storage model

In this paper, each storage unit is modelled as a node integrated
across the network. Let S, represent the H, storage facility and S
indicate the volume of H, in each facility at time . The H, balance
constraint at each storage facility for any time ¢ is expressed by Eq. (19),
which ensures that the difference between the inflow a € f;,(b) and
outflow ¢ € f,,,(b) at node “b” remains constant over the specified time
interval.

— -1
5;,17 = S;’U + ( Z F, - Z FZ‘C> NteT 19)
aefm (b) cefam(h)
S;,U < Srg»b' < S;{,v (20)

Where, the variable S;‘Ul denotes the volume of H, in r—1 time slot. The

upper S; | and lower S;v limits on the H, storage facility are denoted

by Eq. (20). Consequently, Eq. (21) denotes the state equation of the
storage unit.

St =05,8,1=0, @D

For the pressure head at the outlet of the water storage facility,
Hgg is modelled over time ¢ based on water demand or flow capacity.
Changes in the head at the storage valve relative to the gas volume are
described by Eq. (22)

Htsg_H;;:( 2 Fu- X

F;),C) NteT (22)
a€ fi, (b) € four(b)
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3.8. Control variables

The pipeline segments shown in Fig. 1 have a different set of vari-
ables: (i) the volumetric H, gas flow rate (Q,,), (i) the H, discharge
pressure (psi) of the nth compressor (p,,), (iii) the suction pressure
(psi) of nth compressor (p;,), (iv) the diameter () and length (£) of the
transmission network. Since, the mass flow rate is considered dynamic,
which changes with the demand requirement. Therefore, the associated
variables need to be evaluated for each segment over the given time ¢.

4. Problem formulation

This work aims to calculate the total cost, including both the operat-
ing and maintenance expenses of installed compressors and the capital
cost (C.,,) of pipelines and compressors. Notably, each compressor
is assumed to be adiabatic, with an inlet temperature that equals
the ambient temperature. For analysis purposes, a lengthy segment of
the Belgium gas network, starting at the Norwegian supply unit in
Gravenvoeren (node 1, Fig. 1), is considered to maintain the ambient
temperature before reaching the next nodes. Although the actual C,,,
of each pipeline segment primarily depends on the diameter (9) and
length (L), this study simplifies the calculation by assuming a uniform
cost of 870/inch/mile/year. Typically, the rate of work (W) performed
by a single compressor is defined as shown in Eq. (23):

(m)z(k—l)/k ~ 1] 23)

Psin

. k
W,,=y><qa’b(m>><sT

where y is a constant valued at 0.08531, g,, represents the non-
negative dynamic gas flow rate under standard temperature conditions,
k= C,/C, for gas at suction condition is 1.41, z denotes the compress-
ibility factor at suction conditions ranging from 1.0 to 1.05, and sy
refers to the suction temperature, set at 520 °K.

Yearly operating and maintenance costs for the compressors are
generally linked to their capacity and are estimated to range from
(8-14$ /horsepower/year + 10,000%), covering installation, foundation,
and other related expenses. Each compressor operates under specific
equality and inequality constraints to ensure that the discharge pressure
remains adequate relative to the suction pressure. Nonetheless, factors
such as friction, leakage, and temperature variations often lead to
pressure losses, making it challenging to maintain a consistent balance
between discharge and suction pressures.

4.1. Pressure & compression constraint

This study imposed a constraint Eq. (24) so that a discharge pressure
is always greater than or equal to the suction pressure [23].

0<p,,<p, VneNteT @4
' P
osp;’v" 5(p7~"),VneN,teT (25)

- . P
Eq. (25) denotes the compression ratio p,”'”

sn

must be within maximum

Tl
Pyn

limit ( .

) for safe operation.

4.2. Constraint on limits

(a=dw,, <v,, <d,, (26)
-8, <p,<p, @7)
L,<L,<rL, (28)
v, <0,<0, (29)

n
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Egs. (26)-(29) set the lower and upper limits on demand, supply,
length, and diameter variables. The variable § represents the uncer-
tainty in supply and discharge pressures. For implementation purposes,
the length of the transmission network is held constant. Consequently,
an equality constraint is applied to the transmission network, which
consists of three branches (¢, Fig. 1), as follows:

J
t,=¢; (30)

j=

The total cost is now represented by Eq. (31):

TN .
— t t 1 ¢ t ;
Cr—z:,z{Wn+('1><Cop)+cmp+z;z;cfx£jxaj -
=1 n= =1 j=

T N i
+ z:7:1 Zszl S;{,u +' +y_t)

The cost reduction objective function (z) over a given time ¢ for (j) and
(s) is denoted by Eq. (32):

.
minz = 2 ¢ (32)

subje(t:;lto: Egs. (5), (6), (9) to (16), (19), (20), (22) and (24) to (30)
where C,,($/hp-year), C.,,($/hp-year), and C,($/in-mile-year) repre-
sent the yearly operating, capital, and pipeline costs, respectively.
L;(mile) and ?,(in) specify the length and diameter of the pipeline
segment, respectively. The variable # in C,, indicates that operating
costs can vary based on other cost factors.

4.3. Uncertainties in Monte Carlo

The Monte Carlo method is implemented to incorgorate and analyse
the uncertainties in input data in (p,, ps,li,ﬁ, ratio(‘;f'" ), q). The varia-
tion in parameters is captured by generating multiplénscenarios. These
parameters are varied within predefined bounds (+10% under normal
distributions across 100 iterative scenarios.) The results from each
scenario were then evaluated to analyse the overall system performance
under uncertainty. The probabilistic outputs helped us estimate opti-
mal solutions while accounting for variations in key parameters, thus
adding robustness to the decision-making process regarding pipeline

infrastructure and compressor selection.

5. Solution approach and methodology

The proposed system model consists of 13 nodes and a variable
number of compressors (n), dynamically selected by the control algo-
rithm during operation time (¢) based on demand, supply pressure, and
storage volume considerations. In the model shown in Fig. 1, the ob-
jective function can be solved using NLP algorithms when considering
the capital cost in Eq. (31). In that case, solving the objective function
requires branch-and-cut or branch-and-bound methods to handle the
nonlinear control variables (Egs. (13), (15), (23)). The branch-and-
bound approach effectively reduces complexity by eliminating unnec-
essary solution sets. In this method, a tree structure is formed based
on the network’s nodes and branches, where each node represents
an optimization problem (Eq. (31)) with or without integer variables.
Node 1 in the proposed model represents the primal optimization
problem, including the capital cost. The solution obtained at node 1
is a lower bound for the subsequent optimization problems involving
the cost function. If the solution at node 1 is infeasible, the process
is restarted. However, the solution is considered valid if feasible, even
considering the initial capital cost at zero horsepower.

The proposed model is evaluated using different algorithms, includ-
ing deterministic, stochastic, and dynamic approaches, to enhance the
solution’s effectiveness in analysing convergence and optimality. These
methodologies were selected to highlight the efficiency of our dynamic
optimization approach. We benchmarked it against deterministic and
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stochastic methods, both of which are standard in network optimiza-
tion but have limitations in handling uncertainties and computational
costs. Our method, incorporating Monte Carlo scenario analysis, out-
performed these approaches, reducing computational time by 39.13%
and operational costs by 25.02%. In the deterministic approach, the
initial pressure at supply points (Egs. (24)—(27)), flow, and cost are
kept fixed during implementation. The problem is transformed into a LP
formulation by fixing the integer variable, yielding an integer optimal
solution. The initial solution (Mixed-Integer Programming - MIP) is
achieved in 92 iterations, and the second solution (LP) is obtained in 77
iterations. During implementation, the operating cost of compressors
(Eq. (31)) is observed as dynamic due to the behaviours of decision
variables. For simulation purposes, a gas storage unit is integrated at
node 9, adding complexity to finding an exact optimal solution. To
address this challenge, we utilize a “discrete constraint optimization”
strategy with a dynamic search method. The objective function is solved
in 64 iterations to obtain an integer optimal solution, followed by
fixing integer variables for solving second-stage LP problems as in the
deterministic approach. The first-stage MIP is solved in 70 iterations,
and the reduced LP problem is solved in 56 iterations. The overall
objective function (Eq. (31)) is optimized using the CONOPT solver
in 59 iterations. Finally, we implement a dynamic search algorithm
to solve the network optimization problem considering dynamic flow,
storage integration (Egs. (19), (20) and (22)), and dynamic operating
cost. The MIP and LP solutions are obtained in 66 and 65 iterations,
respectively, both proven to be optimal. Notably, the NLP with discrete
optimization strategy and CPLEX solver achieves faster convergence
compared to the deterministic and stochastic strategies.

The optimization problem at node 2 is also nonlinear, with multiple
compressors considered based on branch length. The decision tree in a
network graph descends in each iteration, constraining the solutions
until the global solution is obtained. The lower and upper bounds for
each compressor in each respective pipeline remain constant. It is worth
noting that the solution obtained at node » in a decision tree could be
feasible but not necessarily optimal. Therefore, we may call it a viable
or general solution. To ensure optimality, the implementation continues
until the entire network is configured with reduced cost.

Finally, in the context of gas network optimization using graph the-
ory modelling, a combination of these approaches might be most effec-
tive. A dynamic approach captures time-dependent aspects, a stochastic
approach handles uncertainty in demand and supply, and a determin-
istic approach finds precise solutions for certain fixed conditions. The
specific trade-offs between accuracy, computational complexity, and
ability to handle uncertainty will guide the choice of the most suitable
approach or combination of approaches. It is essential to consider the
problem’s characteristics and optimization objectives before deciding
on the methodology.

Throughout the paper, all variables are defined with their values.
The following assumptions are made in this work:

* Demand Capacity: the value of the gas demand (g/)) is known in
advance for the set of junctions (j € J) over a given time 7.
Flow Rate: nodes “a” and “b” denote the nodes that carry the
non-negative flow (g, ;) of gas from node “a” to node “b”.

Supply-Demand Ratio: the gas distribution network is designed
with an initial assumption that gas supply and demand are zero
during the operation time. This is ensured through the optimal
solution.

Network Layout: the gas transmission and distribution network is
assumed to be horizontal.

Network Length: the initial length of the distribution network is
fixed, however, the optimization algorithms optimize the length
and diameter to minimize the overall cost as detailed in Table 3.
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5.1. Major challenges and simplifications of the model

This section describes the major challenges and their simplifica-
tions in solving the gas network optimization problem. These can be
enumerated as follows:

* Pressure and Flow Characteristics: hydrogen gas exhibits varying
pressure and flow characteristics over time, especially when de-
mand is dynamic. Thus, the network must be designed to meet
demand requirements without losing pressure. We address this by
considering dynamic gas flow rates (Egs. (1), (3) to (6) and (8)).
The demand capacity varies over time, and pressure drop (Egs.
(4), (27) and (28)) is implemented as a constraint to maintain the
supply—demand ratio (Egs. (25) and (27)) during the implementa-
tion process. Additionally, pipeline design ensures the nodal head
pressure is maintained (Eq. (9)-Eq. (16)) over time.

» Demand Management: storage units allow for decoupling produc-
tion and consumption rates. Excess capacity can be stored for later
use during low-demand or high-production periods, ensuring a
stable and reliable supply. Coordinating production and storage
is critical to avoid wastage and inefficiencies. Matching supply
and demand with storage capacity is complex, especially with
intermittent renewable energy sources. This problem is modelled
in Section 3.7 and considered a constraint in solving the objective
function (Eq. (24)).
System Modelling Complexity: integrating storage into the multi-
objective optimization model may increase the system modelling
complexity. Handling multiple parameters, constraints, and objec-
tives related to storage can be challenging for the optimization
algorithm. Therefore, the mathematical models are designed to
ensure a globally optimal solution without violating any con-
straints.
Feasibility & Practicality of Proposed System: it is also equally
important to ensure the feasibility of using existing natural gas
pipelines to transport pure hydrogen. Recent studies and reports,
including those by the European Hydrogen Backbone Initiative
(EBH) [48] and Gas for Climate (2020) [49], confirm the prac-
ticality of repurposing natural gas infrastructure for hydrogen
transmission. It is generally feasible to use existing pipelines
with minimal modifications for low-pressure hydrogen networks.
However, high-pressure networks may require adaptations such
as material upgrades and compression technology enhancements
due to hydrogen’s smaller molecule size and potential for em-
brittlement in steel pipelines [50]. For example, the UK’s HyNet
Northwest project has demonstrated the successful retrofitting of
natural gas pipelines for hydrogen transport under real-world con-
ditions [51,52]. Furthermore, the EHB study provides a roadmap
for transitioning existing gas networks to accommodate hydrogen
by 2040, validating the practicality of such approaches across
multiple European countries, including Belgium EHB.

6. Results and discussion

In the proposed system model (refer to Section 3), we apply our
approach to the Belgium gas network (Fig. 1), a network comprising 13
nodes, including a single supply point and a storage unit. This particular
network was selected for its variability in gas demand across different
nodes (such as Luxemburg, Blaregnies, and Liege), which effectively
represents realistic usage patterns. Additionally, the variation in de-
mand ratios over a specified period, ¢, is involved in demonstrating
the model’s convergence rate. Table 1 provides the variables and their
values used in this implementation, while Table 2 lists the nodes
alongside their corresponding city names.

The flowchart in Fig. 2 provides a detailed step-by-step process for
optimizing the hydrogen network transmission. The process begins with
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Table 1
Simulation variables.
Variable Meaning Value
k suction condition 1.41
z compressibility factor 1.00
St suction temperature 60 °C
n compressor cost 70 ($/hp/year)
(o pipe capital cost 870 ($/inch/mile)
Cop operating cost 8 ($/hp)
Py suction pressure 198.4 (psi)
Py max. suction pressure 1000 (psi)
P min. suction pressure 200 (psi)
;7 max. discharge pressure 1000 (psi)
Pa min. discharge pressure 200 (psi)
q max. discharge pressure 600 (psi)
q min. discharge pressure 200 (psi)
2 max. diameter of pipe (initial) 36 (inch)
2 min. diameter of pipe (initial) 3 (inch)

Table 2
Nodes and corresponding cities in
the Belgium gas network.

Node City

1 Gravenvoeren
2 Bernaeu

3 Liege

4 Warnand Dreye
5 Wanze

6 Sinsin

7 Arlon

8 Luxembourg
9 Namur

10 Anderlues

11 Storage

12 Peronnes

13 Blaregnies

setting the number of iterations, which defines the total computational
runs for optimization. Next, the initialization of variables, such as flow
rates, demand profiles, and key parameters for pipelines, compressors,
and storage, is performed. After this, the objective function, constraints,
and limits are established to minimize both computational and oper-
ational costs. The solver selection follows, where the GAMS system,
using the CONOPT solver, is employed due to its effectiveness in
handling large-scale, non-linear optimization problems common in gas
network planning. Once the problem is solved, the solution is checked
for optimality. If the solution is not optimal, the model loops back,
adjusting variables as necessary. If an optimal solution is found, the
model proceeds to Monte Carlo simulation with uniform distribution
for scenario analysis, which tests the robustness of the solution under
uncertain conditions (e.g., fluctuations in demand or supply). If the
solution still proves to be optimal after scenario analysis, the results are
saved. Otherwise, adjustments are made, and the problem is resolved.
The loop continues until the total iterations are exhausted or the stop-
ping criteria (such as convergence or stability of the solution) are met.
The iterative and scenario-based process ensures that the final solution
is both computationally efficient and operationally feasible, which is
critical for the real-world application of transforming Belgium’s natural
gas network into a hydrogen network.

Based on the system model shown in Fig. 1, the solution results
of the designed problem are illustrated in Figs. 3 to 7. In Fig. 3, the
discharge pressure across the various nodes in the network is compared
for three different approaches: deterministic, stochastic, and dynamic.
The results show that the proposed dynamic approach exhibits superior
performance in terms of discharge pressure optimization. The key
advantage of the dynamic approach lies in its ability to respond to
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Fig. 2. Process flow of the proposed optimization mechanism.

1000

. . .
L [ Deterministic
900 - [ stochastic
[ Dynamic
800 J

600 M N 1
=]

400 | ]

Discharge Pressure (psi)
(o)
8

1 2 3 4 5 6 7 8 9 10 11
No. of Nodes

Fig. 3. A dynamic gas discharge pressure at the different nodes of Table 2.

varying demands by dynamically adjusting the number of compressors,
allowing for more efficient resource allocation. This is in stark contrast
to the deterministic and stochastic methods, which operate with fixed
compressor settings and fail to account for real-time demand fluctu-
ations. As a result, the deterministic and stochastic approaches show
higher variability in discharge pressures across the nodes, whereas the
dynamic approach maintains a more stable and optimized pressure
distribution. This performance is achieved through the use of the CPLEX
solver, which directly solves the Mixed-Integer Nonlinear Programming
(MINLP) problem without requiring linearization, thereby allowing for
more accurate and responsive compressor scheduling.

In Fig. 4, the comparison of gas flow, discharge, suction, and
pressure drop at various nodes further highlights the advantages of
the dynamic approach. Specifically, the dynamic scheduling algorithm
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results in a more balanced and optimized flow across the network.
This is crucial in real-world applications where demand can change
rapidly, and the system must adapt to maintain optimal flow and pres-
sure conditions. The dynamic approach integrates real-time gas flow
(MMCFD) considerations into the optimization, which ensures that each
node operates under optimal conditions, thereby improving overall
system efficiency. In contrast, both the deterministic and stochastic
methods show greater pressure drops and less optimal flow profiles,
indicating suboptimal resource allocation. The stochastic and dynamic
algorithms (Fig. 4b,c) give a relatively balanced profile across nodes
(8-11) due to the selection of diameter and length of the pipes (Table
3). Similarly, Fig. 4a gives a low flow rate across nodes (4-7), which
is due to the selection of a constant diameter (18 inches) of the pipe.
Moreover, the selection of length across node (4) seems non-optimal,
which is unexpectedly increased in the deterministic approach, causing
a pressure drop. The inclusion of gas flow in the objective function,
unlike similar work where this was not accounted for, allows for a more
comprehensive optimization of the network’s operations. By addressing
both the variability in discharge pressure (Fig. 3) and the overall system
flow and pressure profiles (Fig. 4), the proposed approach demonstrates
its ability to outperform traditional methods in terms of efficiency,
resource allocation, and response to demand fluctuations. These en-
hancements make the dynamic approach particularly well-suited for
real-time operational management in complex gas networks.

Fig. 5 shows the comparison of flow rates across each node. It
reflects that the flow dynamically changes across each node depending
on the supply—-demand creation, lower and upper limits, and scheduling
uncertainties. However, the overall operation is completed to fulfil
the required objective. The figure also shows that the deterministic
algorithm exhibits higher flow rates at nodes 8-10, while the stochastic
and dynamic algorithms display more consistent profiles due to the
dynamic behaviour of the control variables during the implementation
and decision process.

Fig. 6 presents the pressure drop profiles at each compressor. The
loss function is included in the objective function, which depends on
the compressor types and specifications. The maximum pressure drop
is observed at nodes 3, 5, and 7, where the deterministic technique
outperforms the other techniques. However, the overall performance
of the dynamic technique is better, primarily due to the mismatch
between the dynamic pressure on the supply and demand sides. The
pressure drop at the remaining nodes is reasonably lower, which can
be attributed to the selection of valves, junctions, and compressors.

Fig. 7 displays the profiles of the suction pressure across each node
along with the minimum and maximum limits. Initially, the suction
pressure in the dynamic technique shows a continuously increasing
trend, which leads to decreased costs compared to the other techniques.
It is clear from Fig. 8 that the dynamic algorithm significantly reduces
operating costs (59.98%), primarily due to the optimal selection of
compressor stations (four stations in total). In contrast, the determin-
istic and stochastic algorithms show comparatively higher operating
costs, as six to seven compressors are required in these approaches.
Consequently, the compressor capital cost is also lower in the dynamic
algorithm, highlighting its cost efficiency. However, it is important to
note that the pipe capital cost in the dynamic algorithm is marginally
higher (0.084%) than in the stochastic algorithm and (3.49%) more
than in the deterministic approach. This increase stems from the se-
lection of a slightly longer pipeline across node 3 (143 km). Despite
this, the overall reduction in operating and compressor costs validates
the superior performance of the dynamic algorithm in terms of cost
optimization.

Table 3 shows the relationship between the diameter and length of
the H, pipeline network across the given number of nodes. These results
demonstrate the variation in length and diameter selection during the
implementation process. The dynamic flow has impacted the optimal
selection of the diameter. This variation is due to changes in H, flow
pressure based on the demand profiles. Similarly, Table 4 presents
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Fig. 6. Gas pressure drop at the different nodes of Table 2.

the compressor ratios and workloads, comparing scenarios with fixed
pressure using the Eq. (25) (ratio-1 and work-1) and dynamic demand
(ratio-2 and work-2). Table 5 extends this comparison by including
a probabilistic approach with storage units, showing three different
settings: fixed pressure without storage (ratio-1, work-1), integration of
storage units (ratio-2, work-2), and both storage unit and dynamic flow
rate (ratio-3, work-3). It is also worth mentioning that Table 4 shows
results for only four compressors, whereas Table 5 includes results
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Fig. 8. Total capital cost of the H, transmission network to meet the demand.

for six and seven compressors. This increased number of compressors
helps to reduce the extra pressure on individual compressors through
optimal pressure allocation across all compressors. Otherwise, selecting
a smaller number of compressors may lead to excessive pressure drops.

A performance comparison of the three methodologies — stochastic,
dynamic, and deterministic — is shown in Table 6. This analysis
evaluates the impact of each method on the objective function, iden-
tifying the optimal values achieved by each approach. The dynamic
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Table 3
Relationship between the diameter and length of the gas pipeline network.
Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13
N Diameter 34.20 31.91 31.91 18.0 18.0 18.0 18.0 18.0 18.0 18.0 33.71 18.0 18.0
Deterministic
Length 3.0 49.21 96.78 3.0 40.400 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Probabilistic Diameter 33.71 31.67 31.67 18.0 18.0 18.0 18.0 18.0 18.0 18.0 33.71 18.0 18.0
Length 3.0 53.04 92.95 3.0 40.400 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Deterministic with Storage Diameter 34.20 31.61 31.61 18.0 18.0 18.0 18.0 16.76 16.76 16.76  33.71 16.76  16.76
8 Length 3.0 38.97 107.02 3.0 16.53 13.70 16.16 3.0 3.0 3.0 3.0 3.0 3.0
Probabilistic with Storage Diameter 33.71 31.39 31.39 18.0 18.0 18.0 18.0 16.82 16.82 16.82 33.71 16.82 16.82
8 Length 3.0 42.11 103.88 3.0 7.97 8.57 29.85 3.0 3.0 3.0 3.0 3.0 3.0
Dvnamic Diameter  36.00 36.00 32.25 18.0 18.0 18.0 18.0 17.47 17.47 17.47 3371 17.47 17.47
Y Length 3.00 3.00 143.00 3.0 7.92 8.57 29.85 3.0 3.0 3.0 3.0 3.0 3.0

Table 4
Optimal selection of the compressors and comparison of work done based on ratio
(Eq. (25)), Dynamic approach.

Sr. No Compressor Ratio-1 Work-1 Ratio-2 Work-2

1 C, 1.469 9288.83 1.475 9384.46

2 C, 1.373 7566.75 1.369 7488.469

3 C 1.131 2866.32 1.150 3274.98

4 Cs 1.253 1799.70 1.253 1799.70
Table 5

Optimal selection of the compressors and comparison of work done based on ratio
(Eq. (25)), Probabilistic and deterministic approaches.

Sr. No Compressor Ratio-1 Work-1 Ratio-2 Work-2 Ratio-3 Work-3
1 C, 1.469 9288.83 1.475 9384.46 2.00 17214.88
2 C, 1.373  7566.75 1.369  7488.469 1.85 15160.67
3 [N 1.104  2312.02 1.121 2654.71 1.70 12949.58
5 Cs 1.500 4679.86 1.514 4818.90 1.66 5981.40
6 C 1.248  2502.46 1.101 1075.90 1.101 1075.90
7 C; - - 1.108 1148.27 1.108 1148.27

method achieved the highest objective value, surpassing the stochastic
and deterministic approaches by 6.94% and 5.34%, respectively. The
stochastic technique yielded the best average solution, surpassing the
dynamic and deterministic methods by 8.58% and 13.70%. Since, the
simulations were conducted across 100 scenarios for 100 iterations
using Monte Carlo simulation, considering variations in pipe & op-
erating costs as well as suction & discharge pressures with +18.75%
deviation. Notably, the total number of iterations required to complete
the simulations was consistent across all methods, though execution
time and iterations increased with the total number of scenarios. In
addition, the optimality criteria are also validated via a convergence
test. Regarding cost reduction, the proposed dynamic approach excels
in cost reduction due to its adaptability to fluctuating demand and op-
erational conditions. It optimizes compressor selection and scheduling,
integrates storage facilities for efficient gas management, and effec-
tively addresses uncertainties in cost, suction, and discharge pressures.
This holistic strategy enables global optimization, leading to lower
operating costs and enhanced system efficiency, ultimately resulting in
significant overall cost savings.

7. Conclusions and future work
In this study, we introduced a novel MINLP approach with CPLEX

employing branch-and-cut and branch-and-bound algorithms to address
the complex hydrogen gas network problem in the Belgian network.

11

Utilizing a graph theory-based framework, our model optimizes the pri-
mal MINLP problem with a strong focus on cost reduction. We reduce
computational delays by leveraging discrete and continuous optimizers
such as DICOPT with CPLEX or CONOPT solvers through integer vari-
able fixing. Unlike conventional methods that rely heavily on branch-
and-bound for NLP, our strategy enables dynamic hydrogen demand
management, incorporating storage facilities without excessive depen-
dence on historical datasets and control variables. The proposed model
demonstrates adaptability by incorporating deterministic, stochastic,
and dynamic techniques, each suitable for different scenarios. The
deterministic approach offers simplicity and computational efficiency
but lacks flexibility when dealing with uncertainties in demand. The
stochastic method accounts for uncertainty but is computationally more
expensive. In contrast, the dynamic technique, which is the core of
our work, adapts in real-time to fluctuating demand, offering supe-
rior performance in terms of resource allocation and computational
efficiency. Our results demonstrate that the dynamic approach signif-
icantly reduces the number of iterations (56 iterations) compared to
deterministic (92 iterations) and stochastic (77 iterations) methods,
achieving a 25.02% cost reduction while maintaining robustness.

The advantages of the dynamic approach, including real-time adapt-
ability and superior computational performance, make it particularly
well-suited for large-scale, complex hydrogen network transmission
planning. However, deterministic and stochastic methods remain valu-
able in specific application scenarios, such as when system uncertainties
are minimal or known in advance. Our approach has been validated
through real-world simulations, effectively addressing the challenges
associated with hydrogen network optimization and planning in large-
scale systems. Building on these findings, our future work aims to
expand the hydrogen network to include electricity or water distribu-
tion networks, adopting a holistic energy system approach. This aims
to advance sustainable and efficient hydrogen networks, transforming
clean energy technology and its practical application. To achieve this,
several key areas will be addressed:

» Model Complexity: addressing the high complexity and computa-
tional demands of the current model, which may limit scalability
and applicability to other networks.

Integration Challenges: exploring the integration of hydrogen
networks with electricity and water systems, and managing their
interdependencies and impact on performance.

Real-Time Data Integration: combining real-time and historical
data for improved prediction and long-term forecasting, while
addressing data synchronization and reliability issues.
Demand-Side Management: enhancing demand forecasting to op-
timize network planning and utilization, considering factors like
consumer behaviour, demand
influences, technological advancements, and policy changes.

variation, environmental
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Table 6

Performance comparison of different algorithms.
Algorithm Exe. time (s) Best sol. Avg. sol. Std. dev. Sol. Iter.
Deterministic 8.937 6796965.745 7019837.219 121375.297 Optimal 112
Stochastic 8.406 7005929.375 6452271.910 306275.029 Optimal 104
Dynamic 7.860 6452271.910 7005929.375 307817.986 Optimal 104
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